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Resumo

Feridas cutaneas representam um problema de saude publica que afeta milhdes de
pessoas, causando desconforto e gerando custos elevados ao sistema de saude. O
acompanhamento adequado dessas lesdes € fundamental para monitorar o
processo de cicatrizagdo. Apesar dos avangos tecnoldgicos, a mensuragdo de
feridas ainda é realizada predominantemente de forma manual, utilizando réguas
descartaveis ou folhas de acetato, métodos que apresentam baixa preciséo,
resultados subjetivos e podem representar riscos de infecgdo ao paciente. Este
trabalho investigou o desenvolvimento de um sistema capaz de analisar ferimentos
cutaneos de forma automatizada por meio de imagens fotograficas. A hipdtese
central sustenta que a Visdo Computacional viabiliza o desenvolvimento de um
sistema capaz de mensurar a area do ferimento e reconhecer as cores presentes na
lesdo. O objetivo geral foi desenvolver um sistema capaz de medir a area do
ferimento e identificar as cores presentes de forma automatizada mediante registros
fotograficos. Os objetivos especificos incluiram: implementar um algoritmo que
identifica o ferimento; desenvolver uma funcdo para calcular automaticamente a
area; criar um moédulo para identificar as cores; e integrar uma interface grafica para
visualizagdo dos resultados. O sistema Bio-CV foi desenvolvido utilizando Python,
OpenCV e técnicas classicas de visao computacional, implementando trés
algoritmos principais: segmentacdo por Active Contour para detecgdo de bordas,
calibragcao através de adesivo de referéncia (1 cm?) para calculo de area real, e
clustering K-Means para analise cromatica segundo o sistema RYB. Os testes com
50 imagens de datasets publicos demonstraram que o sistema consegue segmentar
ferimentos com diferentes morfologias, fornecendo métricas dimensionais (area,
perimetro, circularidade, solidez), quantificacdo cromatica objetiva, e interface
integrada para visualizagdo dos resultados. O trabalho confirma a viabilidade técnica
da analise automatizada de ferimentos cutaneos, oferecendo potencial para maior
precisdo, diminuicdo no risco de contaminagao e melhoria na qualidade de vida dos

pacientes.

Palavras-chave: Feridas cutdneas, Visdo computacional, @ Mensuracao

automatizada, Analise de imagens.



Abstract

Cutaneous wounds represent a public health problem affecting millions of people,
causing discomfort and generating high healthcare costs. Adequate monitoring of
these injuries is fundamental for healing process assessment. Despite technological
advances, wound measurement is still performed predominantly manually using
disposable rulers or acetate sheets, methods presenting low precision, subjective
results, and infection risks. This work investigated developing a system capable of
automatically analyzing cutaneous wounds through photographic images. The central
hypothesis maintains that Computer Vision enables developing a system capable of
measuring wound area and recognizing colors present in the lesion. The general
objective was to develop a system capable of measuring wound area and identifying
colors automatically through photographic records. Specific objectives included:
implementing an algorithm that identifies wounds; developing a function to
automatically calculate area; creating a module to identify colors; and integrating a
graphical interface for results visualization. The Bio-CV system was developed using
Python, OpenCV and classical computer vision techniques, implementing three main
algorithms: Active Contour segmentation for edge detection, calibration through
reference sticker (1 cm?) for real area calculation, and K-Means clustering for
chromatic analysis according to the RYB system. Tests with 50 images from public
datasets demonstrated that the system can segment wounds with different
morphologies, providing dimensional metrics (area, perimeter, circularity, solidity),
objective chromatic quantification, and integrated interface for results visualization.
The work confirms the technical feasibility of automated cutaneous wound analysis,
offering potential for greater precision, decreased contamination risk, and improved

patient quality of life.

Keywords: Cutaneous wounds, Computer vision, Automated measurement, Image
analysis.
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1. Introducgao

Ferimentos, independente da sua causa primaria ou classificagcdo médica,
representam um grande problema de saude publica, visto que milhdes de pessoas
sao portadoras de algum tipo de lesdo. Além de causarem desconforto e diminuirem
a qualidade de vida das pessoas acometidas, também representam um grande custo
ao sistema de saude.

O acompanhamento dessas lesdes € um fator determinante para definir o
tratamento correto e monitorar o processo de cicatrizacdo, dessa forma garantindo o
sucesso do tratamento, que resulta na cicatrizagao da ferida. Dessa forma o rastreio
do ferimento é indispensavel, conhecer as medidas e caracteristicas do ferimento é
importante para que se obtenha informagdes relevantes para o acompanhamento.

Mesmo com avangos tecnolégicos, os profissionais ainda fazem a
mensuragdo do ferimento de forma manual, utilizando réguas descartaveis ou folhas
de acetato. Essas técnicas sdo pouco precisas, tornam os resultados subjetivos,
além de esta sujeito a erro humano, e representar riscos de infeccao e desconforto

ao paciente.

1.1. Problema

Esse trabalho se propde a investigar a possibilidade do desenvolvimento de
um sistema que busca analisar ferimentos cutdneos por meio de imagens
fotograficas. Partindo da imagem, as principais informagdes a serem quantificadas
sdo a area do ferimento e as cores presentes no mesmo, provendo uma analise
automatica da lesao.

Sendo assim, a questdo de pesquisa levantada para esse Trabalho de
Conclusdo de Curso foi a seguinte: E possivel desenvolver um sistema que
analisa ferimentos cutaneos de forma automatizada por meio de imagens
fotograficas?

A hipotese que surge diante desse questionamento, esta descrita na

subsecgao 1.2, a seguir.

1.2. Hipo6tese
A hipotese levantada aponta para um cenario em que a Visdao Computacional,

viabiliza desenvolver um sistema que seja capaz de mensurar a area do ferimento e



reconhecer as cores presentes na lesédo, possibilitando o desenvolvimento de um

sistema que atenda a questao levantada e exposta na subsegao 1.1 (Problema).

1.3. Justificativa

A medicao precisa da area de feridas é um fator de extrema importancia para
obter um tratamento adequado e um acompanhamento preciso do processo
cicatricial (Alonso et al., 2023). Segundo Dastjerdi et al. (2019) o método mais
comumente utilizado nas praticas clinicas para a mensuracao de ferida € obter as
dimensodes lineares da ferida com uma régua.

Entretanto, como destacado por Barbosa (2020), os métodos manuais
apresentam desvantagens significativas, tais como o desconforto causado ao
paciente durante a mensuracdo, possibilidade de contaminagdo do médico e/ou
paciente e potencial subjetividade no resultado da medigao.

A utilizagdo da telemedicina, uso de tecnologias da informacado para
atendimento, na area da saude, de qualidade efetiva a distancia (Lisboa et al ,
2023), somada a ferramentas como Visao Computacional e Inteligéncia Artificial, tem
representado avanco na area da saude, considerando especialmente a
possibilidade de analise de grandes volumes de dados, como resultados
laboratoriais, imagens de exame e mensuragao de ferimentos.

Dessa forma, usufruir de sistemas que visam nao substituir o profissional de
saude, mas sim automatizar sob supervisdo, a mensuragao de ferimentos, pode
trazer inumeros beneficios, como: maior precisao de resultados, diminui¢gdo no risco
de contaminagao e beneficios significativos para a melhora na qualidade de vida dos
pacientes acometidos por esse tipo de ferimento.

E neste cenario que o presente trabalho se sustenta, buscando desenvolver um
sistema que seja capaz de realizar a mensuracdo de ferimentos de forma
automatizada, em busca de solucionar os problemas e buscar os ganhos

supracitados.

1.4. Objetivo Geral
Dentro deste recorte o presente trabalho objetiva desenvolver um sistema
capaz de medir a area do ferimento e identificar as cores presentes no mesmo de

forma automatizada mediante registros fotograficos.



1.5. Objetivos Especificos

Para que o objetivo geral seja obtido, € necessario percorrer os seguintes

objetivos especificos:

—

Implementar um algoritmo que identifica o ferimento na imagem enviada;

2. Desenvolver uma funcao para calcular automaticamente a area do ferimento

a partir da imagem identificada;
3. Criar um modulo para identificar as diferentes cores presentes no ferimento;

4. Integrar uma interface grafica que permita a visualizagcado dos resultados da

analise;

2. Fundamentacgao Teoérica

Esta secao apresenta o embasamento tedrico necessario para compreender e
sustentar a investigagao sobre a utilizagdo da visdo computacional para a analise
automatica de ferimentos cutaneos. A fundamentagao teorica esta organizada em
dois eixos principais que se complementam para subsidiar a resposta a questdo de
pesquisa proposta.

O primeiro eixo aborda ferimentos cutaneos, apresentando conceitos, a
importancia do processo cicatricial e seu acompanhamento, métodos tradicionais de
avaliacdo e a relagdo estabelecida entre as cores identificadas no ferimento. Essa
base é fundamental para compreender os problemas enfrentados e a necessidade
do presente trabalho.

O segundo eixo foca em desenvolver sobre a utilizagao de tecnologias na area
da saude, especialmente a tecnologia em questdo neste trabalho, a visao
computacional, explorando defini¢des, aplicacbes ja aplicadas na medicina e as
principais técnicas relevantes para a solugao proposta . As informagdes abordadas
neste tépico tecnoldgico oferecem o suporte necessario para o desenvolvimento de
sistemas automatizados de analise.

A relacdo entre esses dois campos de conhecimento fornece a base
conceitual e técnica para a obtencdo de um sistema que una precisdo técnica e

relevancia das informagdes obtidas, colaborando com o objetivo final estabelecido.



2.1. Ferimentos cutaneos

A pele é o maior 6rgao do corpo humano, ela desempenha um papel de suma
importancia no corpo, participando de diferentes processos como protecao, sintese
da vitamina D, excrecdo e regulacdo da temperatura, assim sendo, danos a ela
podem significar um grande risco (Tottoli et al. 2020).

De acordo com Nagle, Stevens e Wilbraham (2023), uma ferida é definida
como a lesao ou a interrupgao da integridade celular, anatdbmica e/ou funcional dos
tecidos da pele. A depender das causas e das consequéncias relacionadas ao
ferimento, ele pode ser classificado como agudo ou crénico, as feridas agudas
costumam passar por um processo de reparo organizado e apropriado, recuperando
integridade e funcionalidade. Por outro lado, feridas crbnicas ndo passam por um
processo cicatricial linear, prejudicando a recuperagdo da integridade e
funcionalidade do tecido (Tottoli et al. 2020).

Figura 01: Ferimento cuténeo

)

-
-

Fonte: Coloplast Brasil (Entendendo as skin tears ou lesbes por fricgdo, 2021)

A incidéncia de feridas crbnicas foi estimada entre 1,51 e 2,21 por 1.000
habitantes no mundo, segundo Zhu et al. (2022), e no Brasil, segundo Monteiro de
Menezes et al. (2022), foi constatado que aproximadamente 3% da populagédo é
afetada por alguma forma de lesdo cutanea e esses numeros tendem a aumentar

com o envelhecimento das populagdes.



Em complemento aos autores supracitados, temos Vigneron e Domingos
(2021) que destacam como é importante observar de forma continua os fatores
locais, externos, e sistémicos relacionados ao surgimento da ferida, ou que
interfiram no processo cicatricial.

Segundo Silva et al. (2024) a cicatrizagdo de uma ferida consiste em uma
cascata de eventos que culminam com a reconstituicdo tecidual. Normalmente o
processo cicatricial passa por trés fases: inflamatéria, proliferacdo (ou granulagao) e
remodelamento (ou maturagéo).

Em complemento Guo e Dipietro (2010) destacam que o processo de
cicatrizacdo é complexo e influenciado por multiplos fatores, condicbes como
diabetes, idade avancgada, estado nutricional, perfusao tecidual e estado imunoldgico
podem impactar significativamente a capacidade de reparo tecidual. Nesse sentido,
uma abordagem individualizada torna-se crucial.

A recomendacdo é que se faca uma avaliagdo semanal do ferimento,
utilizando um instrumento padronizado, que possa garantir a confiabilidade e
padronizagao dos dados, para que se possa evoluir de forma devida com processo
de cicatrizagéo (Santos et al, 2017).

O acompanhamento desse processo € de suma importancia para a
adequagao ou o desenvolvimento de um plano de tratamento, de acordo com Bervig
et al. (2021), e isso apenas é possivel a partir da documentagao do mesmo. Esses
dados também s&o determinantes para avaliar a eficacia do tratamento.

Deve-se destacar que a qualidade do tratamento e da assisténcia oferecida
durante esse periodo impacta diretamente na qualidade de vida dos pacientes
(Pontes, 2023). Além disso, (Coutinho et al, 2020) ressalta que uma avaliagao
incorreta do ferimento pode acarretar complicagcbes e atraso no processo de
cicatrizacao

Nesse contexto, a mensuragcdo dos ferimentos cutaneos €& uma etapa
indispensavel durante o tratamento. Os dados sobre o processo de cicatrizagdo séao
fundamentais para basear as decisbes do tratamento Bervig et al. (2021). Sendo
assim, quanto mais precisa e exata € a medicdo, mais confiavel e eficaz é o
tratamento.

Dentre as duas principais técnicas manuais para a mensuracao de ferimentos,

a primeira e mais simples (e padrdo) é baseada em uma régua descartavel, que



calcula a area multiplicando a o maior comprimento pela maior largura, como
destacado por (Alves et al, 2022).

A segunda técnica, também exposta por Alves et al (2022), é o rastreamento
transparente, nessa técnica é utilizada uma folha de acetato quadriculada ou um
plastico transparente colocado sob o ferimento sendo mesmo é contornado, e com

base no contorno obtido a area é calculada.

Figura 02: Mensuragéo com o uso de régua descartavel

Fonte: Feridas Cronicas (PREVENCAO E MANEJO DA LESAO POR PRESSAQ: Manejo da leséo por
presséo, 2020)

Contudo, como destacado por Barbosa (2020), os métodos manuais sao
considerados invasivos e apresentam desvantagens significativas, tais como o
desconforto causado ao paciente durante a mensuragéo, e potencial subjetividade
no resultado da medicao.

Em complemento, Weigelt et al. (2022) destaca que as metodologias atuais de
avaliagao de feridas sdao predominantemente subjetivas e baseadas na experiéncia
clinica, evidenciando a necessidade de ferramentas diagnosticas objetivas que
possam transformar o tratamento de feridas numa abordagem personalizada e de
precisao.

Além dos pontos ja citados, € importante pontuar que a localizagao de algumas
feridas, levando em conta a anatomia do corpo humano, e o perimetro irregular de

algumas feridas, pode prejudicar o processo de mensuragdo manual, dada a



dificuldade em determinar a largura e o comprimento do ferimento, bem como tragar
seu perimetro.

Além da mensuragao, discorrida nos paragrafos anteriores, outro ponto
extremamente relevante € a analise cromatica das feridas, que representa um
parametro fundamental na avaliacdo clinica, fornecendo indicadores visuais que
auxiliam na determinagao do estagio do processo cicatricial, presenga de infecgéo e
vitalidade dos tecidos

Weigelt et al. (2022) enfatizam que os métodos tradicionais de avaliagédo de
feridas carecem de precisdo objetiva, sugerindo que sistemas de analise baseados
em caracteristicas visuais, como a diferenciacdo de cores no leito da ferida,
poderiam proporcionar parametros padronizados para identificar diferentes fases de
cicatrizacao, presenca de inflamacéao, tecido desvitalizado e processos necréticos,
contribuindo assim para diagnosticos mais acurados e protocolos de tratamento
individualizados no contexto da medicina de precisao.

Segundo Mandelbaum, Di Santis e Mandelbaum (2003), o sistema
Red/Yellow/Black (RYB) proposto por Cuzzel para classificagéo de feridas se mostra
um instrumento clinico valioso, pois permite categorizar as lesbes de acordo com a
sua coloragdo, que geralmente reflete o equilibrio entre tecidos novos e tecidos
necrosados, facilitando assim a tomada de decisdo sobre as medidas a serem
implementadas no tratamento.

Sendo assim o ‘RYB wound classification system’, Sistema de classificagao de
feridas vermelho, amarelo e preto, destacado por Santos et al (2017) como sendo
especialmente util dada a simplicidade em seu uso e interpretagao, tem a seguinte

descricdo com base nos seus trés indicativos:

e Vermelho: Indica tecido de granulacdo saudavel, caracterizado por boa
vascularizagcdo e progressdo adequada do processo de cicatrizagéo.
Representa a fase de regeneracéo tecidual ativa.

e Amarelo: Sinaliza presengca de exsudato e tecido desvitalizado. Requer
limpeza cuidadosa do ferimento para remover debris celulares e prevenir
potenciais infecgdes.

e Preto: Evidéncia necrose, representando tecido morto que necessita de
desbridamento imediato. Sua presenca indica interrupcdo do processo

cicatricial e risco de complicagdes graves.



Figura 03: Representacao do Sistema RYB

PROTEGER A VERMELHA

Tecido de granulagio.

LIMPAR A AMARELA
Necrose de iquefagiio (esfacelo).

DESBRIDAR A PRETA
Necrose de coagulagio (escara).

Fonte: Manual de Padronizagéo de Curativos da Cidade de Sao Paulo

2.2 Tecnologia e saude

A integracdo entre a tecnologia e a medicina tem proporcionado inumeros
beneficios, oferecendo maior rapidez e eficacia para andlises médicas e
diagnosticos. No contexto da analise de ferimentos, essas tecnologias podem ser a
solucdo para superar as limitagdes dos métodos manuais, proporcionando
resultados precisos, padronizados e rastreaveis.

Esta secdo apresenta as principais ferramentas e técnicas aplicadas ao
desenvolvimento do sistema de analise de ferimentos. Inicialmente, sdo abordados
as definicbes e fundamentos da visdo computacional, e aplicacbes conhecidas
aplicadas a area da saude, seguido pela apresentagcdo de algumas técnicas

especificas para analise de imagem e cores que viabilizam a implementacgao.

2.2.1 Trabalhos Correlatos

Na area de analise automatizada de ferimentos cutaneos por meio de
imagens, diversos estudos tém sido desenvolvidos nas ultimas décadas, utilizando
diferentes abordagens tecnoldgicas para mensurar a area de feridas e identificar
cores presentes nos tecidos. Esta secdo apresenta uma revisdo dos principais

trabalhos que se correlacionam com a proposta deste estudo.



A revisao bibliografica foi conduzida nas bases de dados PubMed/MEDLINE,
Scopus, e Portal de Periddicos CAPES. As buscas utilizaram combinacdes de
termos relacionados a feridas, como "wound", "ulcer" e "diabetic foot ulcer",
associados a técnicas de processamento de imagens, como "image processing",
"computer vision" e "segmentation”, empregando operadores booleanos AND para
interseccao de termos. Para excluir trabalhos baseados em aprendizado profundo e
inteligéncia artificial, foram aplicados operadores NOT combinados com termos
como "deep learning", "machine learning", "neural network" e "CNN". Os principais
trabalhos identificados s&o apresentados a seguir.

Durante o processo de reviséo bibliografica, constatou-se uma escassez de
trabalhos recentes fundamentados em técnicas classicas de visdo computacional
para analise de feridas. A predominancia quase absoluta de abordagens baseadas
em inteligéncia artificial e aprendizado profundo a partir de 2015 evidencia uma
lacuna no desenvolvimento e aprimoramento de métodos tradicionais de
processamento de imagens.

Cabe mencionar que um dos trabalhos identificados, Goyal et al. (2020),
apresenta uma abordagem hibrida que combina técnicas classicas com deep
learning, sendo incluido nesta revisdo por propor o descritor Superpixel Colour
Descriptor (SPCD) e por ilustrar a transicdo metodolégica observada na area,
demonstrando tanto as contribuicdes das técnicas tradicionais quanto os avancgos

obtidos com métodos baseados em aprendizado profundo.

e Sistema Automatico de Avaliagao de Ulceras do Pé Diabético

Wang et al. (2016) desenvolveram um sistema colaborativo de avaliacéo de
Ulceras do pé diabético composto por um smartphone para captura de imagens e um
laptop para processamento, comunicando-se via Wi-Fi em modo peer-to-peer.

O sistema utiliza técnicas classicas de visdo computacional para realizar trés
fungdes principais: determinacao da area da ferida através de um algoritmo baseado
em mean-shift segmentation aprimorado, classificacdo de tecidos utilizando
K-Means clustering no espaco de cor CIE Lab para segmentar tecidos vermelhos
(cicatrizagao), amarelos (infecgao/slough) e pretos (necrose) segundo o modelo
RYB, e calculo de um healing score (pontuacédo de cicatrizagdo) de 0 a 10 que
quantifica o status de evolucdo da ferida comparando visitas subsequentes com a

imagem inicial.



Para facilitar a captura de imagens de ulceras localizadas na planta do pé€, os
autores desenvolveram uma caixa de captura compacta e de baixo custo feita em
acrilico branco com iluminagao LED consistente. O sistema foi validado clinicamente
com 12 pacientes ao longo de um ano na Clinica de Feridas da Universidade de
Massachusetts, totalizando 32 imagens de ulceras.

O algoritmo de detecgao de area obteve um Matthews Correlation Coefficient
(MCC) de 0,68, superior aos 0,45 reportados por trabalhos anteriores, enquanto a
validagao clinica do healing score através do Krippendorff's Alpha Coefficient (KAC)
variou de 0,42 a 0,81 em comparagdo com as avaliacbes de trés clinicos
experientes. O tempo médio de processamento foi de aproximadamente 6 segundos
em CPU Intel i5, demonstrando eficiéncia computacional adequada para aplicagao
clinica em tempo real e potencial para padronizar a avaliagao de feridas € minimizar

variacoes inter e intra-observador.

e Monitoramento Domiciliar de Feridas com Analise de Espaco de Cor
HSV

Shi et al. (2019) desenvolveram um sistema de monitoramento domiciliar de
feridas crénicas utilizando fotografia de smartphone e algoritmos de analise de
imagem baseados em técnicas classicas de visao computacional.

O sistema foi projetado para permitir que pacientes capturem imagens em
casa sem equipamentos especiais ou calibragdo, processando as fotografias através
de um algoritmo que realiza trés fung¢des principais: transformagéo do espago de cor
de RGB para HSV (Hue-Saturation-Value) com deslocamento do canal Hue para
centrar os valores vermelhos, facilitando a analise por histogramas; segmentacao de
tecidos através de limiarizagao (thresholding) aplicada ao canal Hue para
classificar pixels segundo o modelo Black-Yellow-Red em tecido de granulagéo
(vermelho), tecido epitelial (amarelo-vermelho) e necrose (preto); e refinamento da
classificagdo por meio de operagdes morfoldgicas (erosdo seguida de dilatagcao)
para eliminar artefatos e pequenas areas incorretamente classificadas.

A abordagem foi implementada em Python utilizando a biblioteca OpenCV e
validada através do acompanhamento de uma ferida crénica em perna de paciente
ao longo de 90 dias, totalizando 119 imagens capturadas com um iPhone 7 Plus. O

algoritmo demonstrou robustez em relagdo a variagbes nas condigbes de



iluminacéo, caracteristica atribuida ao uso do espaco HSV, onde o componente Hue
€ teoricamente minimamente afetado pela luminancia geral da imagem. A anélise de
composicao da ferida revelou tendéncias distintas das medigdes de area fisica,
identificando duas fases de cicatrizagcdo: uma fase inicial de granulagdo nos
primeiros 30 dias e uma fase subsequente de reepitelizagao.

Os autores destacam que a analise de composi¢cao tecidual fornece
informagdes complementares as métricas tradicionais de dimensao da ferida, sendo
especialmente adequada para feridas grandes e nao-planares onde medicdes fisicas
precisas sdo desafiadoras, e sugerem como diregdo futura a integragdo com
tecnologias de cameras 3D emergentes em smartphones para adicionar capacidade

de analise volumétrica ao sistema atual de analise de composigao.

e Reconhecimento de Isquemia e Infeccio em Ulceras Diabéticas por
Métodos Hibridos

Goyal et al. (2020) apresentaram o primeiro dataset publico para
reconhecimento de isquemia e infeccdo em Ulceras do pé diabético (DFU),
introduzindo 1459 imagens com ground truth estabelecido por dois especialistas
médicos. Os autores investigaram tanto técnicas classicas de visdo computacional
quanto deep learning para classificagcdo binaria dessas condi¢cdes criticas que
afetam o prognéstico e risco de amputacao.

Para a abordagem classica, os autores propuseram um novo descritor
denominado Superpixel Colour Descriptor (SPCD), especificamente desenvolvido
para extrair caracteristicas de cor relevantes para identificagao visual de isquemia e
infeccdo. O método inicia com sobre-segmentacdao da imagem utilizando a técnica
SLIC (Simple Linear lterative Clustering), que realiza otimizacdo de k-means
localizada no espago 5D CIELAB para agrupar pixels baseado em cor e intensidade.

Com k=200 superpixels para patches de 256x256 pixels, o valor RGB médio
de cada superpixel é calculado e aplicado. Utilizando diferentes valores de threshold,
o algoritmo extrai regides de duas cores particulares de interesse: vermelho
(indicativo de inflamagao/perfusdo) e preto (indicativo de necrose/gangrena),
gerando um vetor de caracteristicas com 10 dimensdes que foi combinado com
descritores classicos de textura (LBP, HOG) e cor (RGB, CIELAB) para treinar

classificadores tradicionais como BayesNet, Random Forest e Multilayer Perceptron.



Os autores também introduziram uma técnica de Natural Data-Augmentation
baseada em localizagdo profunda de feridas usando Faster R-CNN com
InceptionResNetV2, que identifica automaticamente a regido de interesse (ROIl) da
Ulcera nas imagens completas do pé. Como aproximadamente 92% das ulceras
ocupam entre 0-20% da area total da imagem, técnicas convencionais de
augmentation (random crop, scale, translation) apresentam risco de perder a ROI. A
Natural Data-Augmentation aplica magnificagdes progressivas centradas na ferida
detectada, seguidas de transformagbes adicionais (rotacdo, espelhamento, ruido
gaussiano, ajustes de contraste), focando o aprendizado nas caracteristicas
salientes da regido ulcerada.

Para comparacao, foram testados modelos de deep learning com transfer
learning (Inception-V3, ResNet50, InceptionResNetV2) e um modelo Ensemble CNN
que combina bottleneck features de multiplas CNNs com classificador SVM. O
dataset foi dividido em 70% treino, 10% validacido e 20% teste com validacao
cruzada 5-fold.

Os resultados demonstraram que métodos de deep learning superaram
significativamente as abordagens classicas em ambas as tarefas. Na classificagdo
de isquemia, o Ensemble CNN alcangou 90,3% de acuracia, MCC de 0,807 e AUC
de 0,904, enquanto os métodos classicos obtiveram 78-80% de acuracia. Na
classificagcao de infecgao (tarefa mais desafiadora), o Ensemble CNN atingiu 72,7%
de acuracia com MCC de 0,454, comparado a 60-64% dos métodos tradicionais.
Curiosamente, mesmo com dataset mais desbalanceado, a classificacdo de
isquemia apresentou desempenho superior (acuracia média de 83,3%) em relacéo a
infecgdo (65,8%), sugerindo que indicadores visuais de isquemia (ma perfusao,
gangrena) s&o mais distintivos nas imagens do que os de infecgao.

Os autores reconhecem que a classificagdo de infeccéo a partir de imagens é
particularmente desafiadora porque: (1) as imagens foram capturadas apés
debridamento, removendo indicadores importantes como exsudato purulento; (2)
sinais visuais de inflamac&o podem ser sutis; (3) o gold standard diagnostico requer
testes sanguineos e bacteriolégicos, ndo apenas inspegéao visual. Eles sugerem que
ground truth baseado em testes clinicos objetivos (avaliagdo vascular para isquemia,
exames de sangue para infeccdo) poderia melhorar significativamente a

sensibilidade e especificidade dos algoritmos.



Este trabalho é notavel por representar a transicado entre métodos classicos e
deep learning na analise de Uulceras diabéticas, propondo técnicas classicas
inovadoras (SPCD, Natural Data-Augmentation) enquanto demonstra empiricamente
a superioridade do deep learning para este problema especifico. O dataset publico

disponibilizado constitui importante contribuicdo para pesquisas futuras na area.

e Sistema APD Skin Monitoring para Monitoramento de Feridas

Wu et al. (2019) desenvolveram um aplicativo moével chamado APD Skin
Monitoring, que utiliza técnicas de processamento de imagem baseadas na
biblioteca OpenCV para analise automatizada de feridas cutaneas.

O sistema permite o calculo automatico da area da ferida através de
fotografias convencionais que incluem uma moeda como referéncia de escala, além
de oferecer funcionalidades como analise colorimétrica através de histogramas,
sobreposicdo de imagens para comparagao visual e geragdo de graficos para
acompanhamento da evolugao da cicatrizagao ao longo do tempo.

Para deteccao da moeda de referéncia, o algoritmo de detecgao de circulos
Hough da biblioteca OpenCV foi otimizado através da incorporagdo de
transformacdo para o espago de cor HSV (Hue-Saturation-Value), processando
apenas 0s canais de Saturacdo e Valor para melhorar o contraste e facilitar a
deteccdo, enquanto o canal Hue foi eliminado por n&o ser critico para essa funcéao.

Os autores compararam duas abordagens para deteccdo de feridas: o
algoritmo GrabCut e um método baseado em limiarizacdo de cores. O GrabCut,
embora capaz de realizar segmentacao razoavel, mostrou-se lento (tempo médio de
23,2 segundos) e menos preciso (2/4 imagens segmentadas corretamente), além de
exigir interacdo do usuario para definir um retédngulo ao redor da ferida. Em
contraste, o método de limiarizagao por cor, utilizando o intervalo BGR de (0, 0, 120)
a (100, 100, 255) para separar pixels correspondentes a ferida do fundo da imagem,
seguido de deteccado de contornos, demonstrou maior eficiéncia com tempo médio
de processamento de apenas 1,70 segundos e precisdo de 4/4 imagens
corretamente segmentadas.

Optando pelo segundo método devido a sua maior eficiéncia e precisao na
identificacdo do contorno da lesdo, os autores implementaram funcionalidades

adicionais como analise de histograma de cores para detectar mudangas



caracteristicas como presengca de sangue, crostas ou pus, e sobreposicdo de
imagens ao longo do tempo usando a moeda como referéncia para
redimensionamento e padronizagao.

O sistema foi validado através de um estudo de caso com imagens de ferida
de um voluntario ao longo de aproximadamente trés meses, demonstrando o
potencial dessa tecnologia para empoderar pacientes no automonitoramento de
feridas e reduzir a necessidade de visitas clinicas frequentes, disponibilizando o

aplicativo gratuitamente nas lojas Google Play e App Store.

e Segmentacao de Feridas Cronicas por Clustering em Espagco de Cor

Otimizado

Yadav et al. (2013) desenvolveram uma metodologia para segmentacao
automatica de areas de feridas crbénicas através de técnicas de clustering aplicadas
em espacgos de cor criteriosamente selecionados. O sistema proposto processa
imagens capturadas por cameras digitais convencionais através de um pipeline de
pré-processamento que inclui corregdo de cor pelo método combinado de Gray
World e Retinex, reducédo de ruido por filtro mediano 5x5 para eliminacdo de ruido
sal causado por reflexos em exsudatos, e homogeneizagdo de cores por difusdo
anisotropica baseada no filtro de Perona-Malik que suaviza regides preservando
bordas.

Um aspecto distintivo deste trabalho € a analise comparativa sistematica de
quinze espacgos de cor (RGB, HSI, XYZ, Lab, Luv, LCH, HSV, HSL, YUV, YIQ, CAT02
LMS, YCbCr, JPEG-YCbCr, YDbDr e YPbPr) para identificar os canais com maior
contraste entre a regido da ferida e o tecido circundante. O critério de selecao
baseou-se no calculo do contraste médio absoluto entre as intensidades médias dos
pixels da ferida e do fundo em cada canal. Os resultados demonstraram que os
canais de crominancia Db e Dr do espago de cor YDbDr, utilizado no codec JPEG
2000, proporcionaram contraste superior (0.242 e 0.261 respectivamente),
aproximadamente o dobro dos valores obtidos nos espagos RGB e HSI
tradicionalmente empregados para segmentacéo de feridas.

A segmentacao propriamente dita foi realizada através de dois algoritmos de
clustering nao supervisionado: K-means e Fuzzy C-means (FCM). O K-means

particiona os dados em Kk clusters baseando-se na minimizagdo da distancia



euclidiana entre pixels e centrdides, atribuindo cada pixel exclusivamente a um unico
cluster. O FCM, por sua vez, implementa uma abordagem fuzzy onde cada pixel
recebe um grau de pertinéncia a multiplos clusters, sendo mais adequado para
dados com sobreposicdo de caracteristicas, como é o caso de feridas com
composicao tecidual heterogénea. O parametro de fuzziness m foi configurado como
2 para controlar o grau de sobreposigcao entre clusters.

O sistema foi validado em 77 imagens digitais de cinco tipos diferentes de
feridas crbnicas (Ulceras de presséao, Ulceras diabéticas, uUlceras venosas, Ulceras
malignas e pioderma gangrenoso) provenientes da base de dados médica Medetec,
utilizando segmentagdo manual por dermatologista como padrdo-ouro. As métricas
de avaliagao incluiram acuracia de segmentacao (SA), valor preditivo positivo (PPV)
e sensibilidade. Os resultados mostraram que o algoritmo K-means obteve acuracia
média de 74,39% no canal Dr e 73,76% no canal Db, enquanto o FCM alcangou
72,55% no canal Dr e 75,23% no canal Db, sendo este ultimo o melhor resultado
geral, superando inclusive o algoritmo JSEG reportado por outros autores com
73,1% de acuracia. A analise por tipo de ferida revelou as maiores acuracias para
Ulceras venosas (82,39% com K-means e 84,20% com FCM no canal Db), enquanto
as menores foram observadas em ulceras malignas e pioderma gangrenoso.

A selecdao do canal Db como o mais adequado para segmentagao foi
justificada nao apenas pelo contraste elevado, mas principalmente pela menor
variabilidade de intensidades (desvio padrdo de 0,108 para fundo e 0,127 para
ferida), o que resulta em valores de PPV e sensibilidade mais equilibrados no FCM,
indicando menor sobre-segmentagdao e sub-segmentagdo simultaneas. Os autores
concluem que a abordagem proposta, combinando otimizagao de espaco de cor com
algoritmos de clustering classicos, oferece uma ferramenta computacional objetiva,
confiavel e de baixo custo para segmentacdo e medicdo de area de feridas,
facilitando a avaliagao precisa do processo de cicatrizagdo e podendo ser estendida
para outras aplicagdes similares como segmentacao de tecidos em queimaduras ou

tumores de pele.

e Avaliacio Automatizada de Area de Feridas Baseada em Imagens com

K-Means Clustering e Cédigo QR de Referéncia



Li et al. (2025) desenvolveram um sistema automatizado para avaliacdo
objetiva de area de feridas em ambiente ambulatorial, utilizando técnicas classicas
de visdo computacional combinadas com o codigo QR de identificagdo do paciente
como referéncia espacial.

O método proposto aborda o desafio clinico da variabilidade nas medi¢des de
feridas causada por diferentes profissionais de saude, momentos de avaliagéo e
distancias de captura fotografica, que comprometem a precisao e reprodutibilidade
das medigdes tradicionais realizadas com filme transparente Opsite Flexigrid.

O sistema opera em duas etapas principais: detec¢cdo do codigo QR para
estabelecimento de escala e segmentagado da ferida por clustering. Para deteccéo
do QR code, a imagem capturada por smartphone é convertida para escala de cinza
e submetida a transformagéao binaria por inversdo com limiarizagdo automatica pelo
método de Otsu, que seleciona o threshold 6timo automaticamente para criar uma
imagem binaria onde cada pixel recebe valor 1 (branco) ou 0 (preto) conforme sua
intensidade.

Em seguida, aplicam-se operagdes morfolégicas de dilatagdo seguida de
erosao, que constituem uma operacdo de fechamento para preencher pequenos
gaps, eliminar ruido e tornar as bordas do QR code mais distintas. Objetos
conectados as bordas da imagem sao removidos para isolar o QR code, e um filtro
de area retém apenas objetos dentro de um intervalo de tamanho especifico,
permitindo identificar e calcular a area em pixels do codigo QR através da contagem
de pixels brancos.

Para segmentacédo da ferida, a imagem é convertida do espago RGB para o
espaco de cor L*A*B*, que separa informagdes de luminancia (brilho) e crominancia
(cor), facilitando a segmentagao precisa. O algoritmo K-means clustering é entao
aplicado no espago L*A*B* para agrupar pixels da imagem em clusters distintos
baseados em similaridade de cor, identificando o cluster correspondente a regido da
ferida e gerando uma mascara binaria.

Esta mascara é refinada através de operagdes morfologicas de abertura para
remover pequenos objetos espurios e preenchimento de buracos, resultando em
uma representagao binaria limpa da ferida. A fungdo bwboundaries do MATLAB é
utilizada para tragar os pontos de contorno da regidao segmentada, e a area final é

calculada contando os pixels ndo-pretos dentro do cluster da ferida.



A éarea real da ferida em centimetros quadrados é calculada pela formula:
Area real = (Area em pixels da ferida x Area real do QR code) / Area em pixels do
QR code, eliminando a necessidade de controlar rigorosamente a distancia de
captura fotografica, desde que o cédigo QR e a ferida estejam visiveis na mesma
imagem e a fotografia seja tomada perpendicularmente a superficie da ferida.

O sistema foi validado em 40 pacientes com feridas cutaneas visiveis em
ambiente ambulatorial, capturando trés fotos de cada ferida em alturas aleatérias
usando smartphones diversos (iPhone, Samsung, Asus). A precisdo do algoritmo foi
verificada utilizando uma moeda de 1 centavo de dolar (area real de 2.8488 cm?)
como padrao de referéncia, obtendo area calculada de 2.8366 cm?, representando
uma diferenca de apenas 0,4%.

Testes estatisticos confirmaram a confiabilidade do método: testes t pareados
entre as trés capturas fotograficas aleatorias produziram valores p de 0.370, 0.179 e
0.547, todos superiores a 0.05 e indicando auséncia de diferengas significativas;
correlagdes de Pearson superiores a 0.99 entre todas as combinagbes de fotos
demonstraram consisténcia quase perfeita; e analise de variancia (ANOVA) com
F=0.0049 e p=0.9951 confirmou que as trés medi¢cdes podem ser consideradas
equivalentes independentemente da altura de captura.

Os autores destacam como principais vantagens do sistema: eliminacao da
subjetividade das medi¢gdes manuais, garantia de reprodutibilidade independente do
operador, robustez a variagbes na distancia de captura fotografica, utilizagcdo de
cbédigo QR ja presente no sistema de identificagdo de pacientes (sem necessidade
de elementos adicionais), e adequacgdo ao fluxo de trabalho clinico acelerado de
ambulatérios onde nao é viavel garantir protocolos fotograficos rigorosos.

O método demonstra potencial significativo para monitoramento remoto de
feridas via telemedicina, permitindo que pacientes capturem imagens em domicilio e
as transmitam para avaliagdo clinica a distancia, especialmente relevante para

feridas cronicas como ulceras diabéticas e ulceras de pressao.

2.2.2 Visao Computacional
A Visao Computacional € um conceito antigo. As primeiras mengdes a esse

termo ocorreram por volta de 1950, e em 1982 Ballard e Brown publicaram o livro



Computer Vision. Segundo os autores, a visdo computacional € a ciéncia que
permite que maquinas "enxerguem".

Nesse contexto, segundo Neves, Neto e Gonzaga (2012), a visao
computacional, busca integrar processamento digital de imagens e inteligéncia
artificial, desenvolvendo algoritmos capazes de interpretar de forma inteligente o
conteudo visual de imagens. Em complemento, o “objetivo principal da viséo
computacional é fazer com que as maquinas vejam o mundo da mesma forma que
os humanos” (Bhatt et al., 2020).

Embora o seu objetivo principal permanegca o mesmo desde os primeiros
trabalhos, a capacidade de interpretagdo evoluiu significativamente. Hoje a viséo
computacional permite uma interpretagdo visual mais complexa, com sistemas
capazes de reconhecer objetos, compreender contextos e até antecipar eventos a
partir de dados visuais, e grande parte desses avangos se deve a evolugdo da
Inteligéncia Artificial.

Mesmo que, como citado no paragrafo anterior, os recentes avangos da visao
computacional estejam diretamente ligados a Inteligéncia Artificial, o presente
trabalho tem em foco uma abordagem mais tradicional, baseada em técnicas
classicas de processamento de imagem, implementadas por meio da biblioteca
OpenCV, sem a necessidade de utilizar modelos de IA.

Segundo Kundu (2024), as funcionalidades mais comuns em sistemas

implementados com essa tecnologia séo:

) Aquisicdo de Imagem: Processo de adquirir uma imagem a partir de
sensores de cameras.

° Pré-Processamento: Processo realizado antes de obter as informacgdes
da imagem, visando facilitar o processamento.

° Extracao de Caracteristicas: Obtencao de informacdes que compdem a
imagem, como textura e formato.

° Deteccdo e Segmentacao: Processo realizado para destacar regides
importantes da imagem

° Processamento de alto nivel: Processo que inclui a validagdo dos

dados obtidos sobre as imagens processadas.

A figura 03 ilustra o fluxo base de um sistema voltado a visdo computacional,

algumas aplicag¢des reais desta tecnologia incluem: controle de qualidade, inspegao



visual de equipamentos de seguranga, anadlise de movimentos, monitoramento de

automodveis, e reconhecimento facial, dentre outros.

Figura 03: Fluxo comum de um sistema de Visdo Computacional

AQUISIGAODE MAGEM —»  PREPRDCESSAMENTO — > SEGMENTACAO
¥
¢ RECONHECIMENTO DE " EXTRACAD DE
RESULTADO PADROES CARACTERISTICAS

Fonte: Introducdo a Visao Computacional: Uma abordagem pratica com Python e OpenCV

2.2.3. Visao Computacional na Saude

Um dos maiores desafios da area médica tem sido como adquirir, processar e
exibir dados sobre o corpo, de modo que a informagdo possa ser visualizada,
interpretada e utilizada. Na maior parte dos casos o uso de imagens € a abordagem
mais eficiente para enfrentar esse desafio (Silva , Patrocinio , Schiabel. 2019).

Por esse motivo, segundo Sabry (2024), o processamento de imagens
médicas € uma das areas de aplicagdo mais expressivas e significativas atualmente,
complementado por Tavares et al (2024), que salienta como essa tecnologia tem se
consolidado como essencial.

Barelli (2018), ressalta que sistemas de visdao computacional tém sido
utilizados para detectar anomalias em exames como: tomografias, ressonancias,
ultrassons, etc. Em paralelo a outro campo que vem ganhando espaco
recentemente, de acordo com Tavares et al (2024), o monitoramento de pacientes
em ambiente hospitalar, nesse caso o sistema ¢é utilizado para rastrear movimentos,

detectar quedas, e monitorar sinais vitais.



Figura 04: Tumor cerebral detectado através de visdo computacional.

Fonte: Introducéo a Visdo Computacional: Uma abordagem pratica com Python e OpenCV

Existem também funcionalidades mais criticas sendo desenvolvidas com essa
tecnologia, como as intervengdes cirurgicas assistidas onde sistemas utilizam
algoritmos avangados para guiar instrumentos robéticos com alta precisdo durante

procedimentos (Tavares et al ,2024).

2.2.4. Open Source Computer Vision

O OpenCV (Open Source Computer Vision) (opencv.org), como destacado por
Delai e Coelho, é "um conjunto de ferramentas de programagédo para
desenvolvimento de aplicagbes com Visao" . A ferramenta é completamente
open-source e distribuida gratuitamente, aberta a colaboragdes de qualquer
individuo.

A biblioteca apresenta uma diversidade enorme de mddulos e por esse motivo
€ dividida em grupos especificos de fungdes. Conforme Marengoni e Stringhini
(2009), o OpenCV esta organizado em cinco grupos principais: Processamento de
imagens; Analise estrutural; Analise de movimento e rastreamento de objetos;
Reconhecimento de padrdes; e Calibragao de camera e reconstrugao 3D.

Para o presente trabalho, o foco vai para o processamento de imagens, que
nesse caso sera o principal modulo do sistema. O OpenCV fornece ferramentas
essenciais para manipular e preparar imagens para analises mais complexas
(Marengoni e Stringhini,2009). Por esse motivo foi a ferramenta escolhida para a

implementagao da solugao proposta.


http://opencv.org

A grande vantagem do OpenCV é a sua capacidade de processamento de
imagens em tempo real, além da sua modularidade, e de suas fungdes
pré-codificadas, que permitem o desenvolvimento e implantagdo de solugdes

personalizadas de forma rapida e eficiente.

2.2.5. Técnicas de Visao computacional para analise de imagens

A andlise de imagens de ferimentos cutdneos por meio da visado
computacional requer a aplicacdo de técnicas especificas de processamento e
segmentacédo que permitam a identificagdo e quantificagdo precisa das lesdes. Este
trabalho utiliza uma abordagem baseada em contornos ativos (Active Contour)

precedida por etapas de pré-processamento essenciais.

Figura 05: Imagem original de lesdo por pioderma gangrenoso utilizada para demonstragao do
método de segmentacéo.

Fonte: Salviano et al. (2025)

A delimitagcdo manual da regido de interesse (ROI) é uma pratica comum em
aplicacdes de segmentacao médica, permitindo ao usuario definir a area aproximada
da lesdo e reduzir o espago de processamento. Esta abordagem elimina ruidos
provenientes de regides distantes e melhora a eficiéncia computacional do algoritmo.

No OpenCV, a funcédo selectROI permite essa selecdo interativa:



import cv2

roi = cv2.selectROI ("Selecione a Area de Interesse", imagem original,
fromCenter=False, showCrosshair=True)

X, y, w, h = roi

roi imagem = imagem originally:y+h, x:x+w]

Figura 06: Regido de interesse (ROI) delimitada manualmente sobre a lesé&o.

Fonte: Adaptado de Salviano et al. (2025

O pré-processamento constitui etapa fundamental para melhorar a qualidade
da imagem antes da segmentacao. Segundo Gonzalez e Woods (2018), essa fase
visa reduzir ruidos e realgar caracteristicas importantes da imagem. A converséo
para escala de cinza transforma a imagem colorida em uma representagao
monocromatica através da fungdo cvtColor do OpenCV, simplificando o
processamento ao reduzir a dimensionalidade dos dados de trés canais (BGR) para

um unico canal de intensidade:

imagem cinza = cv2.cvtColor (roi imagem, cv2.COLOR BGR2GRAY)




Figura 07: Imagem convertida para escala de cinza.

Fonte: Adaptado de Salviano et al. (2025)

A suavizagdo Gaussiana aplica um filtro de convolugdo que reduz ruidos de
alta frequéncia enquanto preserva as bordas principais. No OpenCV, a funcéao
GaussianBlur com kernel 5x5 realiza esta operagéo, preparando a imagem para a

segmentacgao subsequente:

imagem suavizada = cv2.GaussianBlur (imagem cinza, (5, 5), 0)

Figura 08: Imagem apods aplicacao do filtro Gaussiano (kernel 5x5).

Fonte: Adaptado de Salviano et al. (2025
Os contornos ativos, também conhecidos como Snakes, sdo curvas

deformaveis que se ajustam aos contornos de objetos em imagens sob a influéncia



de forgas internas e externas (Kass et al., 1988). Este método, implementado na
biblioteca scikit-image através da fungao active_contour, baseia-se na minimizagao
de uma fungao de energia que combina caracteristicas da imagem com restricdes de
suavidade do contorno.

Para a aplicagao do Active Contour, € necessario definir um contorno inicial
préximo ao objeto de interesse. Neste trabalho, utiliza-se uma elipse parametrizada
com base nas dimensdes da ROI selecionada, posicionada no centro da regido e

dimensionada para cobrir aproximadamente 80% da area:

import numpy as np

w // 2

center x
center y = h // 2

(w / 2) * 0.8

raio x
raio y = (h / 2) * 0.8

s = np.linspace (0, 2 * np.pi, 400)

-
Il

center y + raio y * np.sin(s)
c = center x + raio x * np.cos(s)

init = np.array([r, c]).T

Figura 09: Contorno inicial (elipse) para o algoritmo Active Contour.

Fonte: Adaptado de Salviano et al. (2025



Antes da aplicagdo do Snake, a imagem passa por um filtro Gaussiano
adicional através da fungdo gaussian da biblioteca scikit-image, que otimiza a
convergéncia do algoritmo ao suavizar gradientes de intensidade. As forgas internas
do Active Contour sdo controladas pelos parametros alpha (elasticidade) e beta
(rigidez), que regulam a suavidade e continuidade da curva. As forgcas externas séo
derivadas do gradiente de intensidade da imagem, atraindo os pontos do contorno
em direcdo as bordas detectadas. O parametro gamma controla a taxa de

convergéncia do algoritmo:

from skimage.filters import gaussian

from skimage.segmentation import active contour

img gaussian = gaussian(imagem cinza, 3, preserve range=False)
snake = active contour (img gaussian,
init,

alpha=0.015, # Elasticidade
beta=10, # Rigidez

gamma=0.001) # Taxa de convergéncia

Figura 10: Contorno final ap6s convergéncia do Active Contour.

Fonte: Adaptado de Salviano et al. (2025




Apds a convergéncia do Snake, o contorno resultante & convertido em uma
mascara binaria através da funcao fillPoly do OpenCV, que preenche a regido
delimitada pelo contorno com pixels brancos (valor 255) sobre um fundo preto (valor
0):

# Conversdo do Snake para formato OpenCV
snake contour = snake.astype (np.int32)

snake contour = snake contour[:, [1, O0]] # Inverter coordenadas (row,col)
-> (xX,y)

# Criacdo da mascara bindria
mascara snake = np.zeros like(imagem cinza)

cv2.fillPoly (mascara snake, [snake contour], 255)

Figura 11: Mascara binaria da regido segmentada.

Fonte: Adaptado de Salviano et al. (2025



Esta mascara é entdo aplicada a imagem original da ROI através de uma operagéo

bitwise AND, isolando completamente o ferimento do restante da imagem:

imagem segmentada = cv2.bitwise and(roi imagem, roi imagem,

mask=mascara_snake)

Figura 12: Ferimento isolado apds aplicagdo da mascara.

Fonte: Adaptado de Salviano et al. (2025

Com a segmentacado concluida, sdo calculadas métricas quantitativas através
das fungdes contourArea e arcLength do OpenCV, incluindo area em pixels
quadrados, perimetro, circularidade (relagdo entre area e perimetro) e solidez (razao

entre a area do contorno e sua envoltdria convexa):

# Cdlculo de métricas
area = cvZ.contourArea (snake contour)

perimetro = cv2.arcLength (snake contour, True)




X ¢, y ¢, w ¢, h ¢ = cv2.boundingRect (snake contour)

# Circularidade (1.0 = circulo perfeito)

circularidade = (4 * np.pi * area) / (perimetro ** 2) if perimetro > 0 else
0

# Solidez (convexidade)
hull = cv2.convexHull (snake contour)
area_convexa = cv2.contourArea (hull)

solidez = area / area convexa if area convexa > 0 else 0

Estas medidas fornecem informagdes objetivas para acompanhamento clinico

da evolucgao da lesao.

Figura 13: Visualizagao final com overlay do contorno detectado.

Fonte: Adaptado de Salviano et al. (2025)

A abordagem baseada em Active Contour apresenta vantagens significativas

em relagdo a métodos tradicionais de segmentacao por limiarizagao ou detecgao de



bordas, pois se adapta a contornos irregulares, é robusta a variagdes de iluminagéo
e nao depende de limiares fixos ou deteccao prévia de caracteristicas especificas da

imagem (Xu e Prince, 1998).



2.2.6. Técnicas de Visao Computacional para Analise de Cores

A analise cromatica constitui uma etapa fundamental na caracterizacao
de ferimentos, permitindo identificar, quantificar e interpretar as cores
presentes na regido lesionada. Essas informagdes s&o relevantes para
avaliacdo do estagio de cicatrizacdo, detecgcdo de sinais de infecgdo e
monitoramento da evolucdo do tratamento. Nesse contexto, o sistema
Red/Yellow/Black (RYB) proposto por Cuzzel para classificacdo de feridas se
mostra um instrumento clinico valioso, pois permite categorizar as lesdes de
acordo com a sua coloragao, que geralmente reflete o equilibrio entre tecidos
novos e tecidos necrosados (MANDELBAUM; DI SANTIS; MANDELBAUM,
2003). As técnicas de visdo computacional aplicadas a analise de cores
envolvem conversao entre espagos de cores, segmentacdo cromatica e

algoritmos de clustering para identificagdo de cores dominantes.

Antes de iniciar a andlise cromatica, € necessario isolar a regiao de
interesse e remover elementos que possam interferir nos resultados, como
fundos escuros provenientes de etapas anteriores de segmentagdo. A
remocgao de pixels indesejados pode ser realizada através de threshold , onde
pixels com intensidade abaixo de um limiar s&o identificados e substituidos. O

cbdigo abaixo exemplifica essa operagao:



gray = cvz.cvtColor (imagem, cv2.COLOR BGR2GRAY)

_, mask = cv2.threshold(gray, 10, 255, cv2.THRESH BINARY)

mask inv = cv2.bitwise not (mask)

img sem fundo = imagem.copy ()

img sem fundo[mask inv == 255] = [255, 255, 255]

Essa abordagem garante que apenas os pixels pertencentes ao
ferimento sejam considerados nas analises subsequentes. A Figura 14 ilustra

o resultado da remocéo de fundo.

Figura 14: Remocéo do fundo da imagem

(a) Ferimento com fundo escuro (b) Ferimento apo6s remog¢ao do fundo
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Fonte: Adaptado de Salviano et al. (2025)



O OpenCV suporta multiplos espacos de cores, cada um com caracteristicas
especificas que facilitam diferentes tipos de analise. Os espacos mais importantes
para analise cromatica de ferimentos sdo o HSV (Hue, Saturation, Value) e o Lab
(Lightness, a, b). O espago HSV ¢ intuitivo para segmentagdo por cor, por que
separa a informagao cromatica (matiz) da iluminagédo da imagem, enquanto o Lab foi

projetado para aproximar a percepgao visual humana de cores.

A conversao entre espacos € realizada através da fungdo cv2.cvtColor (),

e os canais individuais podem ser separados com cv2.split () :

hsv = cv2.cvtColor (imagem, cv2.COLOR BGR2HSV)

h, s, v = cv2.split (hsv)

lab = cv2.cvtColor (imagem, cv2.COLOR BGR2LAB)

1, a, b = cv2.split(lab)

Os canais H (matiz) e S (saturagao) do espaco HSV permitem identificar
caracteristicas como areas de maior pigmentacdo e regides saturadas. O
canal V (valor/brilho) auxilia na detec¢do de variagdes de luminosidade que
podem sugerir presenca de exsudato. No espaco Lab, o canal L representa a
luminancia, enquanto os canais A (eixo verde-vermelho) e B (eixo
azul-amarelo) capturam informagdes cromaticas independentes da

iluminagado. A Figura 15 apresenta exemplos dos seis canais extraidos.

Figura 15: Canais de cores extraidos
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Fonte: Adaptado de Salviano et al. (2025)

A identificagdo de cores dominantes em uma imagem pode ser realizada
através do algoritmo de clustering K-Means, que agrupa pixels similares em clusters
baseado em suas caracteristicas cromaticas. O algoritmo particiona o conjunto de
pixels em K grupos, onde cada grupo é representado por seu centroide (cor meédia).

Para aplicar o K-Means, a imagem deve ser preparada convertendo-a em um

vetor bidimensional onde cada linha representa um pixel com seus trés valores RGB:

from sklearn.cluster import KMeans

pixels = imagem.reshape (imagem.shape[0] * imagem.shape[l], 3)
kmeans = KMeans (n_clusters=5, random state=42, n init=10)
labels = kmeans.fit predict (pixels)

cores_dominantes = kmeans.cluster centers

ApOs a execugdo, cada pixel recebe um roétulo indicando a qual cluster
pertence, e os centros dos clusters representam as cores dominantes. A contagem

de pixels em cada cluster permite calcular a distribuicdo percentual de cada cor na



regido analisada. E importante filtrar cores indesejadas, como branco residual de

remocgdes de fundo:

from collections import Counter
contagem = Counter (labels)

cores filtradas = []
for cor in cores dominantes:
if not all (componente >= 250 for componente in cor):
cores_ filtradas.append(cor)

A distribuicdo de cores pode ser visualizada através de diferentes
representacdes graficas. Uma paleta de cores pode ser criada desenhando

retangulos coloridos com os valores dos clusters identificados:

def rgb to hex(rgb):
return "#{:02x}{:02x}{:02x}".format (int (rgb[0]), int(rgbl[l]),
int (rgb[2]))

altura barra = 80
paleta = np.ones((len(cores) * altura barra, 600, 3), dtype=np.uint8) * 255

for i, (cor, percentual) in enumerate(zip(cores, percentuais)):
y = 1 * altura barra
bgr = (int(cor[2]), int(cor[l]), int(cor[0])) # RGB para BGR
cv2.rectangle (paleta, (0, y), (420, y + altura barra), bgr, -1)

texto = f"{rgb to hex(cor)}: {percentual:.1f}s"
cvZ2.putText (paleta, texto, (10, y + 45), cv2.FONT HERSHEY SIMPLEX,
0.7, (255, 255, 255), 2)

Alternativamente, graficos de pizza podem ser gerados utilizando bibliotecas
como Matplotlib, possibilitando uma visualizag&o intuitiva dos percentuais de cada

cor:

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 8))

cores _hex = [rgb to hex(cor) for cor in cores dominantes]
plt.pie(percentuais, labels=cores hex, colors=cores hex, autopct='3%1.1£%%")
plt.title('Distribuicdo de Cores')

plt.savefig('grafico cores.png')




A Figura 16 ilustra exemplos de paletas de cores e graficos de distribuigao.

Figura 16: Visualizagéo da distribuicdo cromatica

(a) Paleta de cores dominantes (b) Grafico de distribuicdo percentual

Distribuigao de Cores no Ferimento
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15.86%
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#d8b5b6
64.68%

Fonte: Elaborado pelo autor
Para visualizar a distribuicdo espacial das cores identificadas, pode-se

reconstruir a imagem substituindo cada pixel pela cor do centro do cluster ao qual

pertence, gerando uma versao visual da quantificagao das cores identificadas:

imagem quantizada = cores dominantes[labels]
imagem quantizada imagem quantizada.reshape (imagem.shape)
imagem quantizada = imagem quantizada.astype (np.uint8)

Esse mapa de cores permite identificar visualmente regides homogéneas e
localizar areas com caracteristicas cromaticas especificas, como bordas
avermelhadas indicando inflamagao ou regides amareladas sugerindo presenca de
tecido necroético. A Figura 17 compara a imagem original com o mapa de cores

resultante.

Figura 17: Visualizagéo da quantificagao de cores

(a) Imagem original (b) Mapa de distribuicdo espacial das cores

dominantes




Fonte: Adaptado de Salviano et al. (2025)

As técnicas apresentadas possibilitam uma analise cromatica completa e
quantitativa de ferimentos, fornecendo dados objetivos que podem ser utilizados
para monitoramento longitudinal, comparagao entre diferentes casos e alimentagao
de algoritmos de aprendizado de maquina para classificagdo automatica do estagio

de cicatrizagao.

3. Metodologia

Este trabalho adota uma abordagem de desenvolvimento agil e iterativo,
fundamentada na aplicagdo de dois ciclos PDCA (Plan-Do-Check-Act) para
garantir a qualidade e eficacia da solugdo proposta. Dentro da fase de
execucao de cada ciclo foi utilizado o PDSII (Processo lterativo e Incremental

de Desenvolvimento de Software).



3.1 PDCA

O PDCA é uma filosofia organizacional aplicada a cultura de melhoria
continua, representando uma intersecgdo entre o método cientifico e acgbes
especificas de resolucdo de problemas. O ciclo foi criado na década de 30 por
Walter A. Shewhart, mas foi consagrado 20 anos depois por William Edwards
Deming, por esse motivo a metodologia também pode ser chamada de Ciclo de
Shewhart ou Ciclo de Deming (NGUYEN et al., 2020).

O principal objetivo desse método é ter maior controle dos processos para
elevar a qualidade dos mesmos de forma continua, ele segue quatro etapas bem
definidas para a sua implementagéo: Plan, Do, Check e Act, as iniciais de cada

etapa formam o nome do ciclo.

Figura 18: llustragao do Ciclo PDCA

AGIR | PLANEJAR
Implementar | Melhorias

CHECAR
Resultados | Testes

Fonte: Ciclo PDCA: 4 passos para melhorar processos

A etapa Plan (Planejar) consiste no planejamento das atividades e definicao
de metas, a etapa Do (Executar) representa a implementagao das tarefas conforme

o planejamento, a etapa Check (Verificar) é caracterizada pelo monitoramento e



avaliacdo dos resultados, e a etapa Act (Agir) consiste na implementacao de agbes

corretivas para os problemas identificados (Oliveira et al, 2022).

3.2 PDSII

O desenvolvimento iterativo e incremental € uma abordagem consolidada na
engenharia de software que combina ciclos de refinamento sucessivos (iterativo)
com entregas parciais e funcionais (incremental). Segundo Sommerville (2011), o
modelo incremental reduz custos técnicos de mudancas, facilita o gerenciamento de
riscos e permite entregas mais eficazes ao dividir o sistema em modulos funcionais
menores. Pressman e Maxim (2016) complementam destacando que essa
metodologia permite que o software evolua através de versbes progressivamente

mais completas, possibilitando ajustes continuos baseados em testes.

Figura 19: llustracdo do PDSII

Atividade simultaneas

Especificacdo . Versao inicial
Descricdo . . Verstes
do ESbOQO ——  » Desenvolvimento - intermediarias
Validacao —_— Versao final

Fonte: Engenharia de software. Sommerville, lan. 2011

Esta abordagem mostrou-se particularmente adequada para o presente
trabalho, considerando que o desenvolvimento do Bio-CV exigiu inumeros testes
com diferentes algoritmos e fungdes da biblioteca OpenCV. Foi necessario testar
multiplas técnicas de detecgao de bordas, segmentacdo e analise cromatica para
identificar quais se encaixariam melhor ao problema de analise de ferimentos
cutaneos. O desenvolvimento iterativo permitiu avaliar cada solugao implementada,

descartar abordagens ineficazes e evoluir continuamente os algoritmos.



A aplicagdo pratica do desenvolvimento iterativo e incremental ocorreu
especificamente durante a fase DO (Executar) de ambos os ciclos PDCA. Em cada
iteracdo, um maodulo funcional era implementado, testado individualmente e refinado

antes de avancgar para o proximo .

3.2 Primeiro Ciclo PDCA - Desenvolvimento Dos Algoritmos

O Quadro 01 apresenta a distribuicdo das atividades desenvolvidas no
primeiro ciclo PDCA, focado em desenvolver os algoritmos base do Bio-CV, a
aplicacdo da metodologia foi essencial para um desenvolvimento controlado e um

resultado de qualidade

Quadro 01: Distribuicdo das atividades do Primeiro Ciclo PDCA - Algoritmos

Etapa Atividades Realizadas

Plan (planejar) * Definir requisitos funcionais dos
algoritmos de processamento

* Especificar tecnologias (Python, OpenCV)
* Projetar arquitetura dos moddulos
(deteccao, area, cores)

* Definir dataset de imagens para testes

Do (Fazer) * Implementar algoritmo de enquadramento
e deteccgao de bordas

» Desenvolver médulo de calculo de area
por contornos

* Criar sistema de analise cromatica
baseado no RYB

* Implementar sistema de calibracdo com
quadrado de referéncia

Check (Verificar) * Testar algoritmos individualmente com
dataset de imagens

» Medir precisao na detecg¢ao de bordas
(sobreposicdo minima 80%)

* Avaliar acuracia no calculo de area (erro
percentual)

* Analisar consisténcia da classificacdo de
cores RYB

* Validar sistema de calibracdo com
quadrado de referéncia

Act (Agir) * Ajustar parametros do algoritmo de
deteccédo de bordas

« Otimizar algoritmo de classificagdo
cromatica

* Documentar versao estavel dos algoritmos

Fonte: Elaborado pelo autor



3.2.1 PLAN (Planejar)

A primeira etapa do ciclo consiste em definir as metas e processos
necessarios para alcangar o resultado esperado, sendo imprescindivel no
desenvolvimento de software, pois estabelece o escopo, os requisitos e as
tecnologias a serem utilizadas. No contexto da solugdo proposta, essa fase
concentrou-se especialmente na definicao dos requisitos funcionais do sistema, na
investigacao e selecdo das tecnologias adequadas, no planejamento da arquitetura
dos moddulos e na obtengao das imagens que seriam utilizadas durante os testes.

Para identificar os requisitos necessarios para o sistema, foi necessario
estudar o processo manual de mensuragao e analise de ferimentos para identificar
quais funcbes deveriam ser implementadas, bem como a resposta a ser obtida
desses métodos. Sendo assim, as principais funcionalidades mapeadas foram: obter
a area do ferimento analisado, obter as cores do ferimento, cadastrar pacientes e
associar a analise da ferida ao paciente ao qual ela pertence.

A selecao das tecnologias foi alinhada a definicdo dos requisitos, a escolha do
python se deu pela facilidade da linguagem em operar o processamento de imagens
junto a biblioteca OpenCV que tem uma extensa gama de fungbes logicas ja
implementadas para analise de imagem com foco em obtencdo de contornos e
detecgao de cores.

Com as tecnologias definidas, foi possivel verificar os algoritmos disponiveis e
elaborar a estrutura dos principais médulos do sistema, bem como mapear quais
funcdes poderiam ser utilizadas na detec¢cao de bordas e contornos, bem como a
analise cromatica para classificar usando o sistema RYB.

Para viabilizar os testes e validacdo do sistema, foi necessario definir o
dataset de imagens que seria utilizado durante o desenvolvimento. As imagens de
ferimentos foram obtidas através dos dados publicos da Escola de Enfermagem de
Ribeirdo Preto da Universidade de S&o Paulo' (CALIRI, 2020) e do dataset
disponibilizado pela University of Wisconsin—Milwaukee e pela clinica Advancing the
Zenith of Healthcare (AZH) Wound and Vascular Center?, descrito em Wang et al.
(2020).

1

http://eerp.usp.br/feridascronicas/serie_fotografia.html
2 e . :



https://github.com/uwm-bigdata/wound-segmentation/tree/master/data/wound_dataset
http://eerp.usp.br/feridascronicas/serie_fotografia.html

3.2.2 DO (Fazer)

A segunda fase consiste na execugao pratica do que foi estabelecido durante
o planejamento. Esta fase visa implementar os processos, algoritmos e
funcionalidades definidos na etapa anterior.

No desenvolvimento de software, a etapa DO ¢é caracterizada pela
codificagdo, buscando implementar com as tecnologias definidas, os requisitos
estabelecidos . Para o sistema Bio-CV, esta fase concentrou-se na implementagao
dos algoritmos de processamento de imagem, desenvolvimento da interface grafica
e integracdo de todos os componentes em um sistema funcional.

A aplicagédo pratica do desenvolvimento iterativo e incremental ocorreu em
cada iteracdo, cada moédulo funcional foi implementado, testado individualmente e
refinado antes de avancgar para o préximo componente. Por exemplo, o algoritmo de
detecgcdo de bordas foi desenvolvido em varias iteragcdes, testando diferentes
parametros do detector Canny até obter resultados precisos. Somente apds validar
esse incremento, passou-se ao desenvolvimento do mddulo de calculo de area.
Essa estratégia garantiu que cada parte do sistema fosse validada
progressivamente, reduzindo retrabalho e permitindo correcbes sem impactar
modulos ja estaveis.

Para implementar o modulo de processamento de imagem, tragamos um fluxo
I6gico para o algoritmo: enquadramento — bordas — mascara — extragao — cores.
Inicialmente a ferida € enquadrada, diminuindo a area de detecgado, seguindo pela
aplicacao de algoritmos para a detecgdo das bordas do ferimento. Com as bordas
detectadas, criamos uma mascara binaria que delimita a de forma precisa o
ferimento, e com isso, extraimos apenas o ferimento da imagem original, podendo
em seguida detectar as cores presentes no mesmo, bem como obter a quantidade
de pixels do ferimento.

Para calcular a area real do ferimento foi necessario obter uma referéncia de
tamanho da realidade, utilizamos um quadrado de cor especifica, e area conhecida
para servir como padrdo. Dessa forma conseguimos converter a quantidade de
pixels do ferimento para unidades médicas reais.

O sistema de analise cromatica foi desenvolvido no espago de cores HSV,
permitindo classificar cada pixel segundo o sistema RYB (Red-Yellow-Black) para

identificar diferentes estagios de cicatrizagao.



3.2.3 CHECK (Verificar)

A terceira etapa do método baseia-se em validar se os resultados obtidos da
etapa anterior (DO) estdo em acordo ao que foi planejado na primeira etapa (PLAN).
Dessa forma, essa fase envolve testar o sistema desenvolvido buscando avaliar
quais pontos necessitam de melhorias ou ajustes, estes, se observados, deverao ser
corrigidos na etapa posterior.

Para aplicar no desenvolvimento do Bio-CV, foi utilizado os datasets publicos
de imagens de ferimentos da Universidade de Sao Paulo e do dataset da University
of Wisconsin—Milwaukee (UWM) e AZH Wound and Vascular Center como base para
validacdo do sistema, sendo utilizadas 50 imagens para as etapas de validagao.

O processo de verificagdo foi estruturado de forma sistematica, testando
individualmente cada modulo do sistema (deteccdo de bordas, calculo de area e
analise cromatica) antes de avaliar o desempenho conjunto da solugédo. Esta
metodologia permitiu identificar cenarios especificos onde ajustes seriam
necessarios para otimizar o desempenho da solugéo.

A validagédo dos algoritmos principais do sistema envolveu testes especificos
para cada moédulo desenvolvido. Para a deteccdo de bordas, foi realizada uma
comparagao entre as bordas identificadas pelo algoritmo Canny e o mapeamento
manual, considerando como correta a sobreposicédo de pelo menos 80% entre as
detecgdes. A avaliagdo do calculo de area baseou-se na comparagdo entre
medi¢gdes automaticas e manuais, calculando-se o erro percentual através da
férmula: |area_automatica - area_manual| / area_manual x 100, utilizando o mesmo
quadrado azul de calibragdo em ambas as analises. Para a classificagdo cromatica
RYB, foi verificada a consisténcia entre a categorizacdo automatica e manual das

cores presentes nos ferimentos.

3.2.4 ACT (Agir)

A quarta e ultima etapa do ciclo PDCA, consiste em fazer as alteragdes
identificadas na etapa anterior, com objetivo de evitar que os problemas observados
voltem a se repetir. Além de corregdes, essa fase também implica em aplicar
melhorias na solugao.

No desenvolvimento do Bio-CV, a aplicacdo da etapa ACT baseou-se
diretamente nos resultados obtidos durante a fase de verificagdo, onde foram

identificados pontos especificos que necessitavam de ajustes para melhorar o



sistema. As principais agcbes tomadas incluiram o refinamento dos parametros do
algoritmo que atua na detecgdo de bordas, e otimizagbes no algoritmo de
classificagdo cromatica RYB para aumentar a consisténcia na identificacdo das
cores dos ferimentos.

As agdes implementadas nesta etapa fecham o primeiro ciclo PDCA do
desenvolvimento do Bio-CV, resultando em algoritmo base eficiente e funcional que

atendeu aos critérios estabelecidos em consenso ao que foi planejado.

3.3 Segundo Ciclo PDCA - Interface E Integragéao

O Quadro 02 apresenta a distribuicdo das atividades desenvolvidas no
segundo ciclo PDCA, focado em desenvolver a interface do Bio-CV e integra-la com
o algoritmo base desenvolvido no ciclo anterior, a divisdo em dois ciclos seguindo a
metodologia foi imprescindivel para a diviséo clara das fases do projeto, garantindo

a qualidade de cada etapa.

Quadro 02: Distribuicdo das atividades do Segundo Ciclo PDCA - Interface e Integragao

Etapa Atividades Realizadas

Plan (planejar) + Definir requisitos da interface grafica
* Especificar tecnologia para interface
(Tkinter)

* Projetar layout e fluxo de navegacao

* Definir critérios de usabilidade

* Planejar integracdo com algoritmos
desenvolvidos

Do (Fazer) * Desenvolver interface grafica com Tkinter
* Implementar funcionalidades de upload de
imagem

* Criar sistema de enquadramento interativo
» Desenvolver painéis de visualizagéo de
resultados

* Integrar interface com algoritmos de
processamento

Check (Verificar) » Testar funcionamento da interface grafica
« Validar integracéo entre interface e
algoritmos

» Testar comportamento em situagdes de
erro

* Avaliar clareza na apresentagao dos
resultados

Act (Agir) » Melhorar apresentagao dos resultados




* Otimizar descritivos das operacdes e telas
* Corrigir problemas de integragao
identificados

* Documentar versao final do sistema
completo

Fonte: Elaborado pelo autor

3.3.1 PLAN (Planejar)

O planejamento do segundo ciclo concentrou-se em definir os requisitos e
especificagoes para desenvolver uma interface grafica funcional e integrar todos os
componentes em um sistema unificado. Com os algoritmos de processamento ja
validados no primeiro ciclo, esta etapa focou em projetar como os usuarios finais
interagiriam com a solucao, estabelecendo critérios claros de usabilidade e definindo
a arquitetura de integracao entre interface e algoritmos.

Para definir os requisitos da interface grafica, foi necessario considerar o perfil
dos usuarios finais - profissionais de saude que necessitam de uma ferramenta
intuitiva e de facil operacgao.

A especificagdo da tecnologia Tkinter se deu por sua simplicidade de
implementacéo, compatibilidade nativa com Python e capacidade de criar interfaces
funcionais sem complexidade desnecessaria. O fluxo de navegacgao foi projetado de
forma linear e intuitiva: selecionar paciente — upload da imagem — enquadramento
do ferimento — processamento automatico — visualizacdo dos resultados,
garantindo que cada etapa fosse clara e eficiente.

O planejamento da integracao definiu como a interface se relacionaria com os
algoritmos, estabelecendo um fluxo de dados eficiente onde a imagem carregada
pelo usuario seria processada pelos algoritmos e os resultados apresentados de

forma organizada e compreensivel.

3.3.2 DO (Fazer)

A implementagdo da interface seguiu o planejamento estabelecido na segéo
anterior, a abordagem adotada priorizou a criagdo dos componentes visuais antes da
integracdo com os algoritmos ja validados, permitindo testes isolados de cada
funcionalidade antes da implementagao completa do sistema.

Assim como no primeiro ciclo, o desenvolvimento iterativo e incremental foi

aplicado durante esta fase. Cada componente da interface foi construido em



iteragdes sucessivas: inicialmente desenvolveu-se a interface base do o sistema,
com o login, cadastro, registro de pacientes e ferimentos, em seguida iniciou-se o
upload de imagens, que passou por varias iteragdes até garantir validagao
adequada. Em seguida, o enquadramento interativo foi implementado e refinado
através de testes com diferentes tipos de selecdo. Somente apds validar cada
incremento individualmente, procedeu-se a integragao com os algoritmos do primeiro
ciclo, garantindo estabilidade progressiva do sistema completo.

A implementacao da interface grafica utilizou os recursos do Tkinter para criar
os painéis conforme estrutura projetada. O sistema de upload foi desenvolvido
através de dialogos de selegdo que permitiam carregar imagens nos formatos JPEG
e PNG, com validacao automatica do tipo de arquivo.

O enquadramento interativo foi implementado permitindo ao usuario
selecionar a regido do ferimento através de cliques, criando um retangulo que
delimita a area a ser processada.Os painéis de visualizacdo de resultados foram
desenvolvidos para apresentar simultaneamente a analise sobre a mensuragao e
cores.

A integracdo com os algoritmos de processamento foi implementada através
de chamadas diretas as fungbes ja validadas no primeiro ciclo, onde a regido
selecionada pelo usuario € enviada sequencialmente para os moédulos de detecgao
de bordas, calculo de area e analise cromatica
3.3.3 CHECK (Verificar)

A validagdo do funcionamento da interface grafica foi realizada através de
testes sistematicos de cada componente desenvolvido. Os testes incluiram
verificagcdo do carregamento correto de imagens, funcionamento adequado dos
botdes de controle e responsividade do sistema de enquadramento interativo.

A integracédo entre interface e algoritmos foi validada através da execucgao
completa do fluxo de processamento, confirmando que os dados eram transmitidos
corretamente entre os modulos e que os resultados eram apresentados
adequadamente.

A avaliagdo da clareza na apresentacdo dos resultados foi realizada
analisando a disposi¢ao visual das informacgcdes de area calculada, classificagao
cromatica RYB e visualizagao das bordas detectadas. Os testes confirmaram que os

resultados eram exibidos de forma organizada e compreensivel, permitindo aos



usuarios interpretar facilmente as informagdes geradas pelo sistema de analise

automatizada.

3.3.4 ACT (Agir)

Com base nos resultados dos testes de validacdo, foram implementadas
melhorias na apresentacao dos resultados para tornar as informacdes mais claras e
organizadas visualmente. Os descritivos das operacgdes e telas foram otimizados,
incluindo instru¢des mais diretas para o usuario e melhor identificagdo dos
elementos da interface. Essas alteragbes tiveram como objetivo reduzir possiveis
duvidas durante o uso do sistema e tornar a experiéncia mais intuitiva

Os problemas de integracao identificados durante os testes foram corrigidos,
garantindo que a comunicagdo entre interface e algoritmos ocorresse de forma
eficiente e sem falhas. Foram ajustados aspectos relacionados ao tempo de
resposta do sistema e ao tratamento de excecdes em situacdes de erro, resultando
em maior estabilidade operacional

A documentacao da versao final do sistema completo foi elaborada incluindo
especificagdes técnicas, instru¢des de uso e registro das funcionalidades
implementadas. As acdes de correcdo implementadas nesta etapa finalizaram o

segundo ciclo PDCA, resultando em um sistema Bio-CV integrado e funcional.

4. Solugao

O Bio-CV é um sistema desktop desenvolvido em Python que integra técnicas de
visdo computacional para analise automatizada de ferimentos cutaneos, por meio de
imagens fotograficas. A solugédo foi estruturada em dois médulos independentes,
mas conectados entre si: 0 modulo da interface, responsavel pela interagdo do
usuario com o sistema, e o mdédulo de processamento de imagem, sendo esse 0

core da aplicagao, responsavel pela analise.

4.1 Requisitos do Sistema

4.1.1 Requisitos funcionais



Os requisitos funcionais definem as funcionalidades que o sistema deve
oferecer para atender as necessidades dos usuarios e garantir o adequado
gerenciamento de pacientes e ferimentos. A seguir, sdo apresentados os principais

requisitos funcionais do sistema:

e O sistema deve ser capaz de criar, atualizar e consultar um usuario.

e O sistema deve ser capaz de criar, atualizar e consultar um paciente.

e O sistema deve ser capaz de criar e excluir um registro de ferimento.

e O sistema deve ser capaz de analisar as imagens dos ferimentos
associando-as a um determinado paciente.

e O sistema deve ser capaz de associar novas mensuragdes a um ferimento ja
existente.

e O sistema deve ser capaz de armazenar os dados obtidos no processo de

analise das imagens dos ferimentos.

4.1.2 Requisitos nao funcionais

Os requisitos nao funcionais estdo relacionados as necessidades técnicas para o
funcionamento da solugdo. Sao critérios de qualidade e experiéncia do usuario (UX)

que vocé define e tem que avaliar se foram atendidos ou néo.

e O sistema deve ser desenvolvido utilizando a linguagem de programacéao
Python.

e O sistema deve utilizar o sistema de gerenciamento de banco de dados
MySQL para armazenamento dos dados.

e O sistema deve utilizar a biblioteca OpenCV para processamento e analise de
imagens.

e O sistema deve utilizar a biblioteca Scikit-learn para implementacédo do
algoritmo K-Means na analise cromatica.

e O sistema deve utilizar a biblioteca Tkinter para desenvolvimento da interface
grafica.

e O sistema deve ser compativel com o sistema operacional Windows.

e O sistema deve garantir a confiabilidade dos dados dos pacientes e da

anamnese armazenados.



e O sistema deve priorizar a usabilidade, permitindo que as interagdes sejam
realizadas com a menor interferéncia possivel da habilidade técnica do

usuario.

4.2 Arquitetura do Sistema

O sistema BIO-CV adota uma arquitetura de aplicagdo desktop integrada,
desenvolvida para proporcionar uma solugdo completa e autossuficiente para
analise e acompanhamento de ferimentos cutédneos. A estrutura do sistema é
composta por trés camadas principais: camada de apresentagao (interface grafica),
camada de processamento (analise de imagens e légica de negdcio) e camada de
persisténcia (banco de dados MySQL). Esta organizagdo permite a separagao de

responsabilidades, facilitando a manutencao e evolugéo do sistema.

4.2.1 Organizagao dos Médulos

O sistema é estruturado em um modulo desktop uUnico que integra todas as
funcionalidades necessarias. Este moddulo ¢é subdividido em componentes

especializados:

e Moédulo de Autenticagao: Responsavel pelo gerenciamento de usuarios,
realizando login, logout e controle de acesso as funcionalidades do sistema.

e Moddulo de Gerenciamento de Pacientes: Gerencia o cadastro, atualizagao
e consulta de informacdes dos pacientes, incluindo dados pessoais e historico
clinico.

e Mbdulo de Andlise de Imagens: Componente central do sistema,
responsavel pelo processamento digital das imagens de ferimentos utilizando
técnicas de visdo computacional. Realiza operagbes de segmentacéo,
mensuracgao de area e perimetro, e analise cromatica.

e Moédulo de Visualizagao: Apresenta os resultados das analises permitindo o
acompanhamento da evolugéo do processo cicatricial ao longo do tempo.

e Moddulo de Persisténcia: Gerencia todas as operacdes de comunicagao com
o banco de dados MySQL, incluindo armazenamento e recuperagédo de dados

de usuarios, pacientes, ferimentos e mensuracgoes.



4.2.2 Fluxo de Dados

O fluxo de dados no sistema BIO-CV segue uma sequéncia logica que

garante a integridade e rastreabilidade das informacdes:

1. Entrada de Dados: O usuario autenticado acessa o sistema através da
interface grafica e seleciona ou cadastra um paciente. Em seguida, submete
uma imagem do ferimento a ser analisada.

2. Processamento: A imagem é encaminhada ao mdédulo de analise, onde sao
aplicados algoritmos de visdo computacional para segmentacgéo do ferimento,
calculo de area e perimetro, e extragdo de caracteristicas cromaticas. Os
resultados sdo processados e formatados para apresentacéo.

3. Armazenamento: Os dados obtidos na analise (area, perimetro, cores
predominantes, data da mensuracao) sao associados ao registro do ferimento
correspondente e armazenados no banco de dados MySQL, mantendo o
historico completo de evolucgao.

4. Visualizagao: Os resultados da andlise sao apresentados ao usuario através
da interface, permitindo comparagdées entre diferentes mensuragdes e
avaliacao da evolugao do processo cicatricial.

5. Consulta e Acompanhamento: O sistema permite consultar o historico
completo de mensuragdes de um ferimento, facilitando a tomada de decisdes

clinicas baseadas na evolugao documentada ao longo do tratamento.

4.3 Médulo de Processamento de Imagem

O médulo de processamento de imagem constitui 0 componente central do
sistema BIO-CV, responsavel pela andlise automatizada de ferimentos cutaneos
através de técnicas de visao computacional. Este moédulo € subdividido em trés

componentes principais que trabalham de forma integrada.

4.3.1 Algoritmo de Deteccao de Bordas

A deteccdo precisa das bordas do ferimento é realizada através da

implementagdo do algoritmo Active Contour (Snake), uma técnica avangada de



segmentagado que permite a identificagdo de contornos irregulares com alta precisao.

O processo de detecgao segue as seguintes etapas:
Pré-processamento da imagem:

e Conversdo da imagem para escala de cinza, reduzindo a complexidade
computacional e facilitando o processamento subsequente.

e Aplicacdo de suavizacdo Gaussiana para redugao de ruido, preparando a
imagem para a detecgao de bordas.

e Aplicacao do operador Sobel para deteccédo de gradientes de intensidade nas

diregdes horizontal e vertical, destacando as bordas presentes na imagem.
Inicializagao do Active Contour:

e Definicdo de um contorno inicial em forma de elipse, posicionado no centro da
regido de interesse (ROI) selecionada pelo usuario.
e Os parametros da elipse inicial sdo calculados com base nas dimensbdes da

ROI, garantindo uma aproximacgéo adequada do ferimento.
Segmentagdo com Snake Algorithm:

e O algoritmo Active Contour & aplicado utilizando os parametros otimizados:
alpha (0.015) para controle da elasticidade do contorno, beta (10) para
controle da rigidez, e gamma (0.001) para taxa de convergéncia.

e O contorno evolui iterativamente, ajustando-se as bordas reais do ferimento
detectadas pelos gradientes de intensidade.

e O resultado € um contorno preciso que delimita exatamente a area do

ferimento, mesmo em casos de formas irregulares.
Criagcao da mascara de segmentacgao:

e A partir do contorno final obtido pelo Snake, é gerada uma mascara binaria
que isola completamente o ferimento do restante da imagem.
e Esta mascara é utilizada para extrair apenas a regiao do ferimento, permitindo

analises subsequentes focadas exclusivamente na area afetada.

4.3.2 Calculo de Area



O caélculo preciso da area do ferimento €& fundamental para o
acompanhamento da evolugdo do processo cicatricial. O sistema implementa um
método robusto que fornece medigdes tanto em pixels quanto em unidades reais

(centimetros quadrados):
Calibracao através de adesivo de referéncia:

e O sistema detecta automaticamente um adesivo azul de dimensodes

conhecidas (1cm?) presente na imagem, como demonstrado na figura 19.

Figura 19: Deteccao do adesivo de referéncia pelo B/IO-CV

Fonte: Adaptado de Salviano et al. (2025)

e A detecgéo € realizada através de segmentagcdo no espago de cores HSV,
isolando especificamente a faixa cromatica correspondente ao azul do
adesivo.

e A area em pixels do adesivo é calculada, estabelecendo um fator de

conversao entre pixels? e cm?,
Calculos de area:

e Area em pixels: Calculada diretamente a partir do contorno obtido pelo Active

Contour, utilizando a fungao de calculo de area de contorno do OpenCV.



e Area real: Convertida de pixels para centimetros quadrados aplicando o fator
de conversao obtido na calibragao com o adesivo de referéncia.
e Perimetro: Calculado tanto em pixels quanto em centimetros, fornecendo

informacgé&o adicional sobre o formato e extens&o do ferimento.
Métricas complementares:

e Circularidade: Calculada pela formula (41 x area) / (perimetro?), fornecendo
um indice que varia de 0 a 1, onde 1 indica um circulo perfeito. Esta métrica
auxilia na caracterizagao da regularidade do ferimento.

e Solidez: Razdo entre a area do ferimento e a area do seu envoltorio convexo,
indicando o quao "preenchida" é a forma do ferimento.

e Dimensdes do bounding box: Largura e altura do menor retangulo que
envolve completamente o ferimento, Uteis para estimativas rapidas de

tamanho.

4.3.3 Analise Cromatica

A anadlise cromatica fornece informagdes essenciais sobre o estado do
ferimento, uma vez que diferentes cores estdo associadas a diferentes estagios do
processo cicatricial e possiveis complicacées. O sistema implementa um pipeline

completo de analise de cores:
Conversao de espacos de cores:

e Espaco HSV (Hue, Saturation, Value): Separa a informacéo de cor (matiz)
da intensidade Iluminosa, facilitando a identificacdo de caracteristicas
cromaticas independentemente da iluminagdo. Os canais H, S e V sao
extraidos e analisados individualmente.

e Espaco Lab: Representa cores de forma perceptualmente uniforme, com o
canal L representando luminancia, e os canais A e B representando as
componentes verde-vermelho e azul-amarelo, respectivamente. Este espacgo

€ especialmente util para analises clinicas de cor.

Clustering de cores com K-Means:



e Aplicacdo do algoritmo K-Means para identificar as cores dominantes
presentes no ferimento.

e O algoritmo agrupa pixels com cores similares em clusters (padrdo: 5
clusters), identificando automaticamente as tonalidades predominantes.

e Remocéo automatica de pixels correspondentes ao fundo branco, garantindo

gue apenas as cores do ferimento sejam analisadas.
Quantificagao e visualizagao:

e Calculo de percentuais: Para cada cor identificada, é calculado o percentual
de area que ela representa no ferimento total.

e Cobdigos hexadecimais: Cada cor dominante é representada em formato
hexadecimal RGB, facilitando a documentacdo e comunicagdo dos
resultados.

e Paleta de cores: Geragcdo de uma visualizagdo grafica mostrando as cores
detectadas com seus respectivos percentuais.

e Grafico de distribuicdao: Criacdo de um grafico de pizza ilustrando a
proporgao de cada cor no ferimento.

e Mapa de cores: Geragdo de uma imagem segmentada mostrando

espacialmente onde cada cor predominante aparece no ferimento.

4.4 Interface Grafica

A interface grafica do sistema B/O-CV foi desenvolvida utilizando a biblioteca
Tkinter. O design da interface prioriza a claridade na apresentacédo das informagdes
e a facilidade de navegacéo, evitando complexidades e facilitando o entendimento
dos dados exibidos.

Anexadas abaixo (Figura 20, Figura 21, e Figura 22) estao as trés principais
telas do sistema proposto, o design da interface do sistema na integra pode ser

encontrado no Figma®:

Figura 20: Tela de cadastro de ferimento

3 https://www.figma.com/design/i3Cn4Mt2NOwnxf4xOEcinO/BIO-CV?node-id=0-1&t=9SMonBfYbTUe8ppf-1



https://www.figma.com/design/i3Cn4Mt2NOwnxf4xOEcinO/BIO-CV?node-id=0-1&t=9SMonBfYbTUe8ppf-1

& Cadastro de Ferimento - Teste - BIO-CV
— Voltar

Cadastrar Novo Ferimento

Paciente: Teste

Descrigédo do ferimento

eva detalhadamente o ferimento (tipo, caracteristicas, causa,

Data do ferimento:  Localizag&o no corpo

24/11/2025 . ] [ Ex: Brago direito, perna esquerda, tdrax.

Fonte: Autores

Figura 21: Tela de envio de imagens

& Anélise de Ferimento - Teste - BIO-CV

+ Voltar

Sistema de Analise de Ferimentos por Imagem

Este sistema auxilia na mensuracéo automatica da area e
das cores dos ferimentos a partir de imagens capturadas

Selecione a imagem Funcionalidades Principais:

« Andlise de Area: O sistema utiliza tecnologia de
viséo computacional para identificar a érea do
ferimento, proporcionando medicdes para
acompanhamento da cicatrizacéo ao longo do tempo

« Deteccéo de Cores: O sistema identifica as diferentes
cores presentes no ferimento, permitindo uma
avaliacdo detalhada da condigéo da pele e dos
tecidos afetados.

Como Funciona

Am?Sle 2 M=l E_lqul 1. Upload da Imagem: Envie uma foto clara do
ou clique para selecionar ferimento

2. Analise Automatica: O sistema processara a imagem
e exibira os resultados em poucos segundos,
incluindo a area total do ferimento e a distribui¢éo de
cores

3. Visualizagdo de Resultados: Visualize os resultados
diretamente na tela

Fonte: Autores

Figura 22: Tela analise de resultados



Andlise de Ferimento - Teste - BIO-CV - X

«— Voltar

Sistema de Analise de Ferimentos por Imagem

Imagens da Analise

Segmentagédo Distribuigao de Cores Mapa de Cores

Andlise de core:

» C

Analise Dimensional

e il

Fonte: Autores

4.5 Integragcao e Funcionamento

A integragdo entre os modulos do sistema BIO-CV ocorre de forma
coordenada e automatizada, garantindo a fluidez do processo de analise e a
consisténcia dos resultados. O sistema foi arquitetado para que cada maddulo
desempenhe sua funcdo especifica de maneira independente, mas integrada
através de interfaces bem definidas e simples que facilitam a comunicacdo e o
compartilhamento de dados.

O fluxo operacional inicia-se com a autenticagdo do usuario no moédulo de
login, que valida as credenciais e estabelece a sessdo de trabalho. Uma vez
autenticado, o usuario acessa o médulo de gerenciamento de pacientes, onde pode
selecionar um paciente existente ou cadastrar um novo registro. Esta integracao
com o banco de dados MySQL garante que todas as informagdes sejam persistidas
de forma segura e organizada.

Ao submeter uma nova imagem para andlise, o sistema aciona
automaticamente o moddulo de processamento de imagens, que executa
sequencialmente os algoritmos de detec¢ao de bordas, calculo de area e analise
cromatica.

Os resultados obtidos pelo médulo de processamento sao entao estruturados

e enviados ao modulo de persisténcia, que realiza a inser¢gao dos dados no banco



de dados, associando-os ao registro do paciente e ao ferimento especifico,
juntamente com o timestamp da analise. Esta integracdo permite que o histérico
completo de mensuragdes fique disponivel para consultas futuras e analises
comparativas.

Finalmente, o modulo de visualizagao recupera os dados armazenados e 0s
apresenta de forma organizada e de facil entendimento na interface grafica,
utilizando componentes visuais como tabelas, graficos e imagens processadas. Esta
apresentacao integrada permite que o usuario tenha uma visdo completa e objetiva
do estado atual do ferimento e de sua evolugao ao longo do tratamento.

A arquitetura integrada do sistema garante que todo o fluxo, iniciando da
captura da imagem até a exibicdo dos dados obtidos pela analise, ocorra de forma

fluida e transparente, minimizando a necessidade de intervengdo manual.

Figura 23: Fluxograma do funcionamento do BIO-CV



Madulo de autenticacio Modulo de gerenclamento de paciente
Autenticacdo do usudrio Selecionar/cadastrar paciente
Validar eredenciais Criar novo ferimenta
L.
Estabelecer sessdo
L., A

Madulo de processamento de iImagens

Submeter imagem do ferimento Carregar imagem dao ferimento
Caleular fator de conversio (pixels = cm) Detectar adesivo de referéneia
Usudrio seleciona regiio de interesse Pré-processamento da imagem
Aplicar Snake Algarithim Inicializar Active Contour
Criar mascara de segmentacdo Izalar ferimenta
Andlise de dimensdes ] ( Andlise de dimensbes
Canverter para espagos de cores Caleular Area
Aplicar K-Means Clustering Caleular Perlmetro
Remover funde brance Caleular métricas (circularidade, solidez)
Caleular percentuais de cada cor Obter dimensdes da Bounding Bex
Gerar visualizagdes (paleta, grafico, mapa)

Modulo de persisténcia Modulo de visualizacao

Estruturar dados obtidos
Apresentar resultados na interface

Armazenar no banca de dados

Fonte: Autores



5. Resultados e discussoes
5.1 Consideragoes Iniciais sobre a Validagao

O presente trabalho propds-se a investigar a viabilidade do
desenvolvimento de um sistema capaz de analisar ferimentos cutaneos de
forma automatizada mediante registros fotograficos. Para responder a
questdo de pesquisa levantada: "E possivel desenvolver um sistema que
analisa ferimentos cutdaneos de forma automatizada por meio de imagens
fotogréficas?”, foi desenvolvido o Bio-CV, um sistema desktop que integra
técnicas de visdo computacional para mensuragao de area e identificacdo de
cores em ferimentos.

A validacdo realizada nesta etapa da pesquisa concentrou-se em
demonstrar a viabilidade técnica e funcional da solu¢cdo proposta. Para isso,
foram conduzidos testes com 50 imagens do datasets publicos previamente
citados, avaliando a capacidade do sistema em executar as funcdes para as
quais foi projetado: segmentar ferimentos em imagens fotograficas, calcular
areas relativas através de calibragdo com adesivo de referéncia, e quantificar
a distribuigdo cromatica segundo padrdes clinicamente relevantes.

E importante destacar que esta primeira versédo do Bio-CV foi validada
através de analise visual qualitativa, com foco na funcionalidade dos
algoritmos implementados e na consisténcia dos resultados gerados. A
abordagem adotada consistiu em verificar se o sistema é capaz de produzir
segmentagdes visualmente coerentes, medigdes reprodutiveis e analises
cromaticas que correspondam a aparéncia visual dos ferimentos processados.

Dessa forma, os resultados apresentados nas secdes seguintes

concentram-se em demonstrar que:

1. O sistema é funcionalmente operacional, executando todas as
etapas propostas de forma automatizada;
2. Os algoritmos implementados sao capazes de processar imagens

reais de ferimentos com diferentes caracteristicas;



3. Os resultados gerados s&o visualmente coerentes e internamente
consistentes, apresentando potencial para aplicagao clinica apos validagcao
quantitativa;

4. A abordagem baseada em visdo computacional &€ tecnicamente

viavel para a analise automatizada de ferimentos cutaneos.

A proxima segao apresenta a validagéo funcional de cada algoritmo de
processamento de imagem do sistema, seguida pela analise de casos
especificos que ilustram o comportamento do sistema Bio-CV em diferentes

cenarios clinicos.

5.2 Validacao Funcional dos Algoritmos de Processamento de imagem

O Modulo de Analise de Imagens, descrito na sec¢ao 4.3, constitui o nucleo do
sistema Bio-CV e implementa trés algoritmos principais que operam de forma
integrada: (1) deteccao de bordas através do algoritmo Active Contour, (2) calculo de
area e metricas por meio de calibragdo com adesivo de referéncia, e (3) analise
cromatica utilizando clustering K-Means para identificacdo de cores dominantes.

Esta secdo apresenta a validagao funcional de cada um desses algoritmos,
demonstrando sua capacidade operacional e discutindo os resultados obtidos
durante os testes realizados com os datasets publicos utilizados para o
desenvolvimento do sistemas, ja citados anteriormente neste documento, foram
utilizadas 50 imagens para a validagao.
5.2.1 Algoritmo de Detecg¢ao de Bordas com Active Contour

O algoritmo de detecgédo de bordas, implementado através do método Active
Contour (Snake), constitui a primeira etapa do processamento e é fundamental para
todo o sistema, pois a precisdo da segmentagao impacta diretamente todos os
passos posteriores. O algoritmo foi testado com as imagens dos datasets de teste,
contemplando ferimentos com diferentes caracteristicas morfolégicas: bordas bem
definidas, contornos irregulares, presenga de exsudato e variagdes de tonalidade.

A figura 24 apresenta trés casos do processo de detecgdo de borda com

ferimentos com diferentes caracteristicas.



Figura 24: Resultados da detecgao por Active Contour em diferentes tipos de ferimentos

(a) Caso A

(b) Caso B

(c) Caso C

(d) Caso D




(e) Caso E

Fonte: Autores

O Caso A (Figura 24a) apresenta um ferimento localizado na sola do pé,
caracterizado por bordas relativamente bem definidas e contraste adequado entre a
lesdo e a pele circundante. Observa-se que o ferimento possui formato arredondado
com poucas irregularidades. O algoritmo Active Contour detectou satisfatoriamente o
contorno final (linha vermelha) adaptando-se adequadamente aos limites do
ferimento. A segmentacdo resultante demonstrou boa correspondéncia visual com
os limites perceptiveis da lesdo, delimitando a extensdo do ferimento de forma
satisfatoria. Nota-se que o contorno inicial em elipse (linha verde) estava proximo as

bordas reais, facilitando a convergéncia do algoritmo.



O Caso B (Figura 24b) apresenta maior complexidade devido a morfologia
irregular do ferimento, que possui formato alongado com multiplas irregularidades e
variagdes significativas de largura ao longo do seu comprimento. O ferimento,
localizado em regido de membro inferior, exibe bordas serrilhadas e presenga de
tecido com tonalidade heterogénea, incluindo areas mais escuras que sugerem
necrose ou tecido desvitalizado. Apesar da complexidade morfolégica, o contorno
evoluiu de forma satisfatéria, ajustando-se as diversas irregularidades da lesao.

O Caso C (Figura 24c) representa uma situagdo intermediari, com um
ferimento apresentando formato ovalado com leve assimetria. A lesdo possui bordas
parcialmente definidas, com algumas regides apresentando transi¢gdo mais gradual
entre o tecido lesionado e a pele perilesional. Observa-se também a presenca de
tonalidades variadas dentro do ferimento, incluindo areas avermelhadas e regides
com coloragdo amarelada nas bordas, possivelmente indicando exsudato. O
contorno final (linha vermelha) acompanhou adequadamente as bordas do
ferimento, embora nas regides de transicdo mais gradual a delimitacdo exata seja
naturalmente mais desafiadora. O algoritmo conseguiu capturar satisfatoriamente a
forma geral da lesdo, incluindo as pequenas irregularidades presentes no contorno.

O Caso D (Figura 24d) apresenta um ferimento de formato alongado
localizado em membro inferior, com caracteristicas de lesdo linear. A lesao exibe
bordas bem definidas ao longo de sua extensdo, com coloracdo avermelhada
intensa e presencga de tecido de granulagéo, exceto na extremidade superior onde
se observa textura e coloracao diferentes, com aspecto mais claro que o resto do
ferimento. O contorno inicial em formato eliptico (linha verde) foi posicionado
acompanhando a orientacao linear do ferimento. O algoritmo Active Contour evoluiu
satisfatoriamente nas regides de coloragdo homogénea, com o contorno final (linha
vermelha) ajustando-se adequadamente as bordas laterais da lesdo ao longo da
maior parte de sua extensdo. Entretanto, a extremidade superior do ferimento, que
apresenta caracteristicas visuais distintas do restante da lesdo, nao foi
completamente capturada pela segmentagéo.

O Caso E (Figura 24e) apresenta um ferimento com formato bem definido e
bordas predominantemente regulares. O contorno inicial (linha verde) foi posicionado
abrangendo a regidao central da lesdo. O algoritmo Active Contour evoluiu
satisfatoriamente, com o contorno final (linha vermelha) acompanhando as bordas

da lesdo ao longo da maior parte de sua extensdo. Entretanto, observa-se que na



regido superior do ferimento existe uma reentrancia que nao foi capturada pela
segmentacado, com o contorno passando de forma reta sobre essa concavidade ao
invés de acompanhar a entrada existente. A segmentagao resultante delimitou de
forma adequada a maior parte do ferimento, demonstrando boa correspondéncia
visual com os limites da lesdo, embora essa reentrancia especifica represente uma
limitacdo pontual na detec¢ao do contorno completo.

Com base nos testes realizados, o algoritmo Active Contour demonstrou
capacidade de processar adequadamente ferimentos com diferentes caracteristicas
morfolégicas. O desempenho foi particularmente satisfatorio em casos como o Caso
A, onde bordas bem definidas e contraste adequado facilitaram a convergéncia do
algoritmo.

Em situacbes de maior complexidade, como ferimentos alongados com
multiplas irregularidades (Caso B e Caso D), o algoritmo manteve capacidade de
adaptacdo, ajustando-se as variagdbes de forma ao longo da lesdo. Casos
intermediarios, com bordas parcialmente definidas e variagdes cromaticas (Caso C),
foram processados satisfatoriamente, embora apresentem maior desafio em regides
de transigc&o gradual.

Um aspecto importante observado foi a robustez do algoritmo em relagéo a
contornos nao-convencionais. Diferentemente de métodos baseados em formas
geométricas pré definidas, o Active Contour demonstrou capacidade de adaptar-se a
morfologias complexas, incluindo lesbes com reentrancias e variagdes significativas
de largura, caracteristicas frequentes em feridas.

Os casos que apresentaram maior dificuldade de processamento

compartilhavam caracteristicas especificas:

e Qualidade de imagem: Illuminagdo irregular, presenca de sombras ou
reflexos dificultaram a identificacdo de gradientes de intensidade necessarios
para guiar a convergéncia do contorno.

e Bordas difusas: Transigdes graduais entre tecido lesionado e pele saudavel
representaram o maior desafio, uma vez que nao ha gradiente bem definido
para orientar o algoritmo, como no Caso D.

e Reentrancias profundas: Concavidades no contorno do ferimento, como a

observada na regidao superior do Caso E, e na regiao lateral do Caso B,



tendem a ser mais dificeis de detectar, podendo resultar em contornos mais
retilineos nessas areas especificas.

e Dependéncia do contorno inicial: A qualidade da segmentacdo esta
relacionada a adequagdo da regido de interesse selecionada e ao
posicionamento inicial do contorno.

e Coloragao similar: Ferimentos com tonalidade muito préxima a da pele
circundante apresentaram menor contraste, dificultando a deteccgao

automatica de bordas.

Apesar dessas limitagdes, o algoritmo demonstrou-se funcionalmente
adequado para a proposta do sistema, sendo capaz de segmentar automaticamente

ferimentos com resultados visualmente coerentes em diferentes cenarios clinicos.
5.2.2 Algoritmo de Calculo de area

O algoritmo de calculo de area é responsavel por converter a segmentacao
obtida em medidas quantitativas clinicamente relevantes. O sistema implementa
uma abordagem baseada em calibragcdo através de adesivo de referéncia,
permitindo a conversdo de medidas em pixels para unidades reais (centimetros
quadrados), possibilitando assim a obtengao de valores mensuraveis que podem ser
utilizados para acompanhamento longitudinal da evolugéo do ferimento.

A calibracao é realizada através da deteccdo automatica de um adesivo azul
de dimensdes conhecidas (1 cm?) posicionado préximo ao ferimento no momento da
captura fotografica. Este processo ¢é fundamental para estabelecer a
correspondéncia entre pixels da imagem e unidades de medida reais. A Figura 25

ilustra o processo de deteccgéo do adesivo de referéncia.



Figura 25: Deteccao do adesivo de referéncia

Fonte: Autores

O processo de detecgédo utiliza segmentagédo no espago de cores HSV (Hue,
Saturation, Value), isolando especificamente a faixa cromatica correspondente ao
azul do adesivo. Os parametros de segmentacgao utilizados foram: Matriz entre 100°
e 130°, Saturagao entre 50 e 255, e Valor entre 50 e 255. Esta faixa foi determinada
empiricamente para capturar o azul caracteristico do adesivo enquanto exclui outros
elementos azulados que possam estar presentes na cena.

Apods a segmentacgao, operagdes morfoldgicas de fechamento e abertura sao
aplicadas para eliminar ruidos e refinar a detecgéo. O maior contorno identificado na
mascara resultante € considerado como o adesivo de referéncia, e sua area em
pixels é calculada automaticamente. Uma vez detectado o adesivo, é calculada sua
area em pixels, estabelece-se o fator de conversao dividindo a area em pixels pela
area real conhecida (1 cm?). Este fator é entdo utilizado para converter todas as
medidas subsequentes de pixels para centimetros quadrados (area) ou centimetros
lineares (perimetro, dimensdes).

Uma vez estabelecido o fator de conversao através do adesivo de referéncia,
o algoritmo calcula automaticamente um conjunto de métricas para caracterizar

quantitativamente o ferimento. A Figura 26 apresenta exemplos visuais da aplicagéo



das meétricas calculadas nos mesmos casos utilizados como exemplo no topico

anterior.

Figura 26: Visualizacdo das métricas calculadas

(a) Caso A
Segmentacao do ferimento Métricas da Analise
Dimensdes Reais
Area 4.97 cm®
Perimetro 9.52 cm
Largura 2.33cm
Altura 3.22cm
Meétricas Calculadas
Circularidade 0.689
Solidez 0.938
Pixels 10671
Métricas em Pixels
Area 10483.50 px*
Area do ferimento )
Perimetro 437.20 px
4.97 cm?
Dimensdes 107 x 148 px
(b) Caso B
Segmentacao do ferimento Métricas da Anélise

Dimensdes Reais

Area 2.87 cm?
Perimetro 8.61cm
Largura 33 cm
Altura 1.37 cm

Meétricas Calculadas

Circularidade 0.486
Solidez 0.866
Area do ferimento Pixels 12931
2.87 cm?
Métricas em Pixels
Area 12677.00 px*
Perimetro 572.27 px
Dimensdes 220 x 91 px

(c) Caso C




Segmentacdo do ferimento

Métricas da Analise

Dimensdes Reais

Area 1.24 cm?
Perimetro 4.77 cm
Largura 1.27 cm
Altura 1.59 cm
Métricas Calculadas
Circularidade 0.687
Solidez 0.942
Pixels 5795
Métricas em Pixels
Area 5654.50 px*
Area do ferimento )
Perimetro 321.66 px
1.24 cm?
Dimensdes 86 x 107 px
(d) Caso D
Segmentacédo do ferimento Métricas da Analise
N Dimensdes Reais
]
Area 3.03 cm*
Perimetro 9.39 cm
Largura 1.57 cm
Altura 3.66 cm
Métricas Calculadas
Circularidade 0.432
Solidez 0.760
Pixels 10404
Métricas em Pixels
Area 10172.50 px*
Area do ferimento _
Perimetro 544.26 px
3.03 cm*
Dimensdes 91 x 212 px

(e) Caso E




Segmentacéo do ferimento Métricas da Analise

Dimensdes Reais

Area 5.21 cm?

Perimetro 10.06 cm

Largura 3.66 cm

Altura 2.24cm
Métricas Calculadas

Circularidade 0.647

Solidez 0.963

Pixels 17755

Métricas em Pixels

Area do ferimento Area 17499.00 px*

2
5.21 cm Perimetro 582.90 px

Dimensdes 212 x 130 px

Fonte: Autores

A tabela 1 sumariza os valores quantitativos das métricas calculadas para os

trés casos representativos apresentados anteriormente

Tabela 1: Métricas calculadas pelo algoritmo para os casos representativos

Métrica Caso A Caso B Caso C Caso D Caso E Unidade
Area (pixels) 10419.00 12677.00 | 5679.50 10172.59 17499.00 px?
Area (calibrada) 497 2.87 1.24 3.03 5.21 cm?
Perimetro 9.52 8.61 4.77 9.39 10.06 cm
(calibrado)
Circularidade 0.689 0.486 0.687 0.432 0.647 0-1
Solidez 0.938 0.866 0.942 0.760 0.963 0-1
Largura (bounding | 2.33 3.31 1.27 1.57 3.66 cm
box)
Qltu)ra (bounding 3.22 1.37 1.59 3.66 2.24 cm
0X

Fonte: Autores

A area calibrada representa a medida fundamental do ferimento, expressa em
centimetros quadrados apds conversao através do fator de calibragdo. Esta métrica
€ essencial para o acompanhamento da evolugédo do ferimento ao longo do tempo,

permitindo quantificar objetivamente a redugdo ou expansao da lesdo. Observa-se



na tabela 1 que o Caso E apresenta a maior area (5.21 cm?), seguido pelo Caso D
(3.03 cm?), Caso A (4.97 cm?), Caso B (2.87 cm?) e Caso C (1.24 cm?), refletindo as
diferencas visiveis de tamanho entre as lesodes.

O perimetro calibrado fornece informagdo complementar sobre a extensao
das bordas do ferimento, sendo particularmente relevante para ferimentos alongados
ou com contornos irregulares. O Caso E apresenta o maior perimetro (10.06 cm),
seguido pelo Caso D (9.39 cm), esse, com sua morfologia alongada e linear,
apresenta perimetro proporcionalmente maior em relagdo a sua area, enquanto os
Casos A, C e E, com formas mais compactas, apresentam relagao area/perimetro
mais equilibrada.

A circularidade, calculada pela formula (411 x area) / (perimetro?), fornece um
indice que varia de 0 a 1, onde valores préximos a 1 indicam ferimentos com formato
proximo ao circular, enquanto valores menores indicam formas mais irregulares ou
alongadas. Observa-se que o Caso D apresenta a menor circularidade (0.432)
devido a sua morfologia linear e alongada, semelhante ao Caso B que possui
circularidade 0.486, enquanto os Casos A, C e E, com formas mais arredondadas,
apresentam valores mais proximos de 1. Esta métrica pode ser util para
caracterizacao e classificacdo de diferentes tipos de lesdes.

A solidez, definida como a razao entre a area do ferimento e a area do seu
envoltério convexo, indica o grau de "preenchimento” da forma. Valores préximos a 1
representam ferimentos com contornos convexos e regulares, enquanto valores
menores indicam presenca de reentrancias ou concavidades significativas. O Caso
D apresenta solidez menor, seguido novamente pelo caso B, refletindo as multiplas
irregularidades observadas em seu contorno, enquanto os Casos A e C apresentam
valores mais altos, indicando formas mais convexas. Esta métrica pode auxiliar na
identificacéo de ferimentos com bordas serrilhadas ou areas de retragao.

No ferimento retratado na figura 27, podemos observar a variagao da
circularidade e solidez, de acordo com as definicdes atribuidas a eles nos paragrafos
anteriores. Dessa forma, sendo o ferimento em questdo mais circular e de bordas
bem definidas, durante a analise ambos os valores se aproximam mais de 1, sendo

respectivamente 0.867 e 0.986.



Figura 27: Deteccao do adesivo de referéncia

Segmentacédo do ferimento Métricas da Andlise

Dimensdes Reais

Area 1.67 cm*

Perimetro 492 cm

Largura 1.4 cm

Altura 1.59 cm

Métricas Calculadas

Circularidade 0.867

Solidez 0.986

Pixels 5840

Métricas em Pixels

Area 5717.00 px*
Area do ferimento

Perimetro 287.91 px
1.67 cm?

Dimensdes 84 x 93 px

Fonte: Autores

As dimensdes do bounding box (menor retangulo que envolve completamente
o ferimento) fornecem estimativas rapidas de largura e altura maximas da les&o,
uteis para a documentacido e comunicacao entre profissionais de saude.

O algoritmo de calculo de area demonstrou-se funcionalmente operacional,
fornecendo medi¢cdes consistentes e um conjunto abrangente de meétricas
quantitativas. A abordagem baseada em calibragdo por adesivo de referéncia
mostrou-se pratica e implementavel, ndo requerendo equipamentos especializados
além da camera fotografica.

Os testes realizados demonstraram que o algoritmo produz valores numéricos
consistentes quando aplicado as mesmas condigdes de entrada, indicando
reprodutibilidade adequada do processamento. A automacgao do calculo de todas as
métricas apds a segmentagcdo elimina a necessidade de intervengdo manual,
tornando o processo mais eficiente e reduzindo a possibilidade de erros humanos na
medigao ou no registro dos dados.

O conjunto de métricas fornecidas (area, perimetro, circularidade, solidez,
dimensbes) oferece caracterizacdo multidimensional do ferimento, permitindo nao
apenas quantificar seu tamanho, mas também descrever objetivamente sua forma e
complexidade morfolégica. Estas informagbes podem ser utilizadas para

acompanhamento da evolugao de ferimentos, comparagdes entre diferentes lesodes,



documentagéo objetiva do processo cicatricial, e também auxiliar na classificagdo da
ferida.

E importante ressaltar que, embora o algoritmo forneca valores numéricos
consistentes e reprodutiveis baseados na calibragdo com o adesivo de referéncia, a
presente validagdo concentrou-se em demonstrar a viabilidade técnica e funcional
da abordagem proposta.

A acuracia absoluta dessas medidas, ou seja, o quao proximas as medigcdes
automatizadas estdo das dimensdes reais dos ferimentos, requer estudos
comparativos controlados com métodos de referéncia estabelecidos e aprovacao do
conselho de ética, que poderao ser conduzidos em etapas futuras da pesquisa.

Algumas consideragdes praticas foram identificadas:

e Dependéncia do adesivo: O sistema requer a presenca do adesivo de
referéncia na imagem para conversédo de medidas reais. Imagens sem o
adesivo podem fornecer apenas medidas relativas em pixels.

e Angulo de captura: A precisdo da calibracdo assume que o adesivo e o
ferimento estdo aproximadamente no mesmo plano. Capturas em angulos
obliqguos ou em superficies curvas do corpo podem introduzir distor¢des
perspectivas que ndo sao corrigidas pelo método atual.

e Qualidade da segmentacdo: A acuracia de todas as métricas depende
fundamentalmente da qualidade da segmentacdo obtida na etapa anterior.
Segmentagdes imprecisas resultardo em medigdes imprecisas.

e lluminacdo do adesivo: Condicbes de iluminacdo que alterem
significativamente a aparéncia cromatica do adesivo podem dificultar ou

impedir sua detecgao automatica.

Apesar dessas consideragdes, o algoritmo demonstrou viabilidade técnica
para a proposta de analise automatizada de ferimentos cutaneos. A abordagem é
compativel com praticas clinicas existentes e pode ser faciimente integrada a

protocolos de acompanhamento de pacientes com feridas.

5.2.3 Algoritmo de Analise Cromatica
O algoritmo de analise cromatica é responsavel por identificar e quantificar as
cores presentes no ferimento, fornecendo informacgdes essenciais sobre o estado da

lesdo. Diferentes cores estdo associadas a diferentes estagios do processo



cicatricial e possiveis complica¢gdes, tornando a analise cromatica um componente
fundamental para avaliagao clinica objetiva de ferimentos cutaneos.

O processamento cromatico inicia-se apds a segmentacdo do ferimento,
utilizando a mascara binaria obtida pelo algoritmo Active Contour para isolar
exclusivamente os pixels pertencentes a lesdo. O sistema implementa analise em
multiplos espagos de cores (HSV e Lab) para capturar diferentes aspectos da
informacdo cromatica, conforme descrito na seg¢do de Fundamentacdo Tedrica
(segao 2.2.6).

A identificacdo das cores dominantes € realizada através do algoritmo de
clustering K-Means, que agrupa pixels com caracteristicas cromaticas similares. O
algoritmo particiona o conjunto de pixels do ferimento em K grupos (clusters), onde
cada grupo é representado por seu centroide, correspondente a cor média daquele
grupo. Para os testes realizados, foram utilizados K=5 clusters, valor que
demonstrou equilibrio adequado entre detalhamento cromatico e simplicidade de
interpretacao.

A Figura 28 apresenta os resultados da analise cromatica aplicada aos trés
casos representativos, incluindo a paleta de cores identificadas, o grafico de
distribuicdo percentual e a reconstrugdo visual da imagem baseada nos clusters de

cores.

Figura 28: Visualizagédo das métricas calculadas

(a) Caso A

Imagem Original Analise de Cores Imagem Reconstruida

Analise de cores

—

<@

Sistema RYB (Red-Yellow-Black) Cores Detectadas (K-Means)

. fted <\29rmelho) #443F4T #BF7175
45.9% 35.53% 14.51%

Yellow (Amarelo) #755E5F #A18EBD
0.0% 18.59% 14.21%

Black (Preto) #D1ADAE
. 54.1% 17.16%




(b) Caso B

Imagem Original Analise de Cores Imagem Reconstruida

Anilise de cores

Sistema RYB (Red-Yellow-Black) Cores Detectadas (K-Means)
Red (Vermelho)
0 #FTDDB2 #E69C89
46.1% 29.27% 14.76%
Yellow (Amarelo) #F0C299 #BF4D52
53.9% 27.79% 11.42%
Black (Preto) #D47470
. 0.0% 16.77%
(c) Caso C
Imagem Original Analise de Cores Imagem Reconstruida

Analise de cores

Sistema RYB (Red-Yellow-Black) Cores Detectadas (K-Means)
[ fed (\f’rme‘ho) #CF5261 HABIHE
95.5% 29.68% 15.51%
Yellow (Amarelo) #BD3238 #F2AB8A
4.5% 27.48% 6.5%
. Black (Preto) #E47368
0.0% 20.83%

(d) Caso D




Imagem Original Andlise de Cores Imagem Reconstruida

Andlise de cores

4

@

Sistema RYB (Red-Yellow-Black) Cores Detectadas (K-Means)
Red (Vermelho)
o #D97063 #EB9887

90.6% 28.56% 13.4%
Yellow (Amarelo) #EBTET2 #B55244
9.4% 26.77% . 7.8%
Black (Preto) #D45B53

. 0.0% 23.46%

(e) Caso E
Imagem Original Analise de Cores Imagem Reconstruida

Analise de cores

Sistema RYB (Red-Yellow-Black) Cores Detectadas (K-Means)
. Red (\‘;erme‘ho) #C85052 4ED9BS2
92.0% 32.39% 11.46%
Yellow (Amarelo) #D06562 #B03B42
8.0% 28.85% 7.82%
Black (Preto) #DATF77
. 0.0% 19.48%

Fonte: Autores

O Caso A apresenta distribuicdo cromatica caracterizada por presenca
significativa de tonalidades escuras (54,1% classificadas como Black/Preto) e
tonalidades avermelhadas (45,9% classificadas como Red/Vermelho), com auséncia
de tonalidades amareladas. A predominancia de cores escuras sugere presenca de
tecido necrosado ou desvitalizado, enquanto as areas vermelhas indicam tecido de
granulagdo. A imagem reconstruida evidencia claramente a distribuicdo espacial
dessas tonalidades, mostrando que as areas mais escuras concentram-se

predominantemente em determinadas regides do ferimento.



A andlise pelo K-Means identificou quatro clusters principais com as seguintes
proporcdes: 35,53% (#442F47), 18,59% (#7F6ESF), 17,16% (#D1ADA4E), e 14,51%
(#8F7179). Esta diversidade de tonalidades, mesmo dentro das categorias RYB,
reflete a complexidade cromatica real do ferimento.

O Caso B apresenta distribuicdo cromatica significativamente diferente, com
predominédncia de tonalidades amareladas (53,9%) e vermelhas (46,1%), sem
presenca de areas classificadas como pretas. Esta composicdo cromatica sugere
ferimento com presenga importante de exsudato ou tecido fibrinoso (tonalidades
amarelas) combinado com tecido de granulagéo (tonalidades vermelhas), indicando
processo cicatricial em andamento sem presenca significativa de necrose.

O K-Means identificou quatro clusters dominantes: 29,27% (#F7DDB2),
27,79% (#F9C289), 16,77% (#D47470), e 11,42% (#8F4D52). A imagem
reconstruida mostra distribuicdo relativamente homogénea das tonalidades mais
claras (bege e laranja) por toda a extensdo do ferimento, com concentragbes de
vermelho mais intenso em regides especificas, possivelmente correspondendo a
areas de maior vascularizagao ou tecido de granulagdo mais maduro.

O Caso C apresenta predomindncia marcante de tonalidades vermelhas
(95,5%), com presenga minima de amarelo (4,5%) e auséncia de tonalidades pretas.
Esta distribuicdo indica ferimento predominantemente composto por tecido de
granulacao saudavel, sugerindo processo cicatricial ativo e favoravel. A pequena
proporcdo de amarelo pode corresponder a areas com exsudato leve ou fibrina nas
bordas, conforme observado visualmente.

A analise pelo K-Means revelou quatro tonalidades vermelhas distintas:
29,68% (#CF6261), 27,48% (#BD0328), 20,83% (#E47789), e 6,5% (#F2468A). A
presenca de multiplas tonalidades de vermelho, mesmo dentro da mesma categoria
RYB, demonstra a capacidade do algoritmo de capturar variagdes cromaticas sutis
que podem ter relevancia clinica. A imagem reconstruida mostra distribuicdo dessas
tonalidades de forma relativamente uniforme, com leve concentragcdo de tons mais
claros em determinadas regioes.

O Caso D apresenta distribuicdo cromatica caracterizada por predominancia
de tonalidades vermelhas (90.6%) e presenca moderada de amarelo (9.4%), com
auséncia de tonalidades pretas. Esta composi¢cao sugere ferimento com tecido de
granulacao predominante (areas vermelhas) combinado com regifes de exsudato ou

fibrina (areas amareladas), indicando processo cicatricial em andamento.



A analise pelo K-Means identificou trés clusters principais com as seguintes
proporcoes: 28.56% (#D97063), 26.77% (#E87E72), e 23.46% (#D45B53). Esta
distribuicdo de tonalidades vermelhas com variagdes sutis de intensidade reflete a
heterogeneidade do tecido de granulagdo ao longo da extensao linear do ferimento.
A imagem reconstruida mostra distribuigdo relativamente uniforme das tonalidades
avermelhadas pela maior parte da lesdo, com as areas amareladas concentrando-se
principalmente na extremidade superior, correspondendo a regido que apresentou
caracteristicas visuais distintas durante a segmentacgao.

O Caso E apresenta distribuicdo cromatica com forte predominancia de
tonalidades vermelhas (92.0%) e presengca de amarelo (8.0%), sem areas
classificadas como pretas. Esta composi¢ao indica ferimento predominantemente
composto por tecido de granulagdo, com presenga de areas amareladas
possivelmente correspondendo a fibrina ou exsudato, conforme observado
visualmente na analise morfolégica.

A andlise pelo K-Means revelou trés clusters principais: 32.39% (#C85052),

28.85% (#D06562), e 19.48% (#DA7F77). A presengca dessas tonalidades
vermelhas distintas demonstra variagdes cromaticas ao longo do ferimento, com
areas de vermelho mais intenso alternando com tonalidades mais claras. A imagem
reconstruida evidencia distribuigdo heterogénea dessas tonalidades, com
concentragcdes de tons mais escuros em determinadas regides e areas mais claras
em outras, refletindo a complexidade do processo cicatricial e a presenga de
diferentes tipos de tecido dentro da lesao.

O algoritmo de analise cromatica demonstrou capacidade de identificar e
quantificar objetivamente as cores presentes nos trés casos representativos,
revelando diferengas significativas entre eles. A comparagéo entre os casos ilustra a
utilidade clinica potencial da quantificacdo cromatica: o Caso A, com 54,1% de
tonalidades escuras, claramente difere dos Casos B e C em termos de composi¢ao
cromatica, sugerindo diferentes estagios ou caracteristicas do processo de
cicatrizagao.

A categorizagdo segundo o sistema RYB fornece interpretacéo clinica
simplificada e alinhada com praticas estabelecidas. O Caso C, com 95,5% de
vermelho, sugere progndstico favoravel com predominancia de tecido de granulagao

saudavel. O Caso B, com distribuicdo equilibrada entre vermelho e amarelo, indica



processo cicatricial em curso com presenca de exsudato. O Caso A, com presenca
significativa de preto (54,1%), sinaliza necessidade de atencdo clinica devido a
proporcao de tecido necrosado ou desvitalizado.

A quantificagdo automatica de cores oferece vantagens significativas em
relacdo a avaliagéo visual subjetiva: fornece valores numéricos reprodutiveis, elimina
variabilidade do observador, e permite acompanhamento objetivo de mudancas
cromaticas ao longo do tempo. A comparagao entre os trés casos demonstra como
diferengcas cromaticas objetivas podem refletir diferentes estados clinicos dos
ferimentos.

A imagem reconstruida, em particular, demonstrou-se ferramenta util para
visualizagdo da distribuicdo espacial das cores identificadas. No Caso A, por
exemplo, torna evidente a localizagao das areas escuras; no Caso B, mostra a
distribuicdo relativamente homogénea das tonalidades claras; e no Caso C, revela a
uniformidade das tonalidades vermelhas por toda a extenséo da lesdo. Além de ser
uma ferramenta de validagao da detecgao das cores em si, ao passo que reproduz a
imagem original.

Algumas consideragdes importantes foram identificadas durante a analise dos
casos:

e Dependéncia da iluminagao: Embora o uso de espagos de cores como HSV e
Lab suavize parcialmente os efeitos de variagdes de iluminacédo, condicbes
extremas ainda podem afetar a identificacdo precisa.

e Subjetividade na categorizagdo RYB: A conversao de cores continuas em
categorias discretas envolve definicao de limiares, por esse motivo pode nao
capturar toda a nuance cromatica, por esse motivo sdo retornadas também os
clusters identificados pelo K-Means

e Validagao clinica: A correspondéncia entre as distribuicbes cromaticas
quantificadas e sua interpretagao clinica requer validagao por profissionais de

saude.

Apesar dessas consideragdes, o algoritmo de analise cromatica
demonstrou-se funcionalmente adequado para fornecer quantificagdo objetiva e
reprodutivel das cores presentes em ferimentos cutaneos. A abordagem oferece
informagdo complementar as métricas de area e forma, contribuindo para

caracterizagao mais completa das lesdes. Reiterando, a solugao deve ser utilizada



como ferramenta de auxilio ao profissional da saude e ndo para diagndsticos sem

supervisao

5.3 Apresentacao dos Resultados Integrados do Sistema

As sec¢des anteriores apresentaram a validagao individual de cada algoritmo
de processamento de imagem implementado no Bio-CV. Esta se¢do demonstra o
funcionamento integrado do sistema através de um caso demonstrativo completo,
ilustrando como todas as funcionalidades operam de forma coordenada desde a
captura da imagem até a apresentagao dos resultados finais.

O sistema Bio-CV opera através de um pipeline sequencial automatizado,
conforme descrito na se¢ao 4 (Solugao). Uma vez que o usuario carrega a imagem e
seleciona a regido de interesse, 0 processamento ocorre automaticamente,
executando as etapas de segmentacao, calculo de métricas e analise cromatica de
forma integrada.

A figura 29 apresenta a interface principal do sistema durante o processo de
analise de um ferimento.

Figura 29: Interface de processamento do Bio-CV

Analise de Ferimento - Teste - BIO-CV - X

«— Voltar

Sistema de Analise de Ferimentos por Imagem

Processando Analise...

®& Detectando adesivo de referénecia...

v RAdesivo detectado: 4090 pixels?

v Fator de conversio: 40%0.00 pixels®/cm®
B rrocessando regido selecionada...

B 2plicando pré-processamento...

E Executando Active Contour (Snake)...

E Conve[gindo contorno. ..

50%

Fonte: Autores



Apo6s a conclusdao do processamento automatico, o sistema apresenta os
resultados de forma integrada através da interface de resultados, que consolida
todas as analises realizadas em uma unica tela.

A figura 30 apresenta a interface completa de resultados do Bio-CV, onde
todas as informagdes geradas pelos trés algoritmos sdo apresentadas de forma

organizada e acessivel.

Figura 30: Interface de resultados completos do sistema Bio-CV

Analise de Ferimento - Teste - BIO-CV = o X

— Voltar

Sistema de Analise de Ferimentos por Imagem

Segmentagao

Distribuigéo de Cores

4
v

Mapa de Cores

/ .

s

Anaélise Dimensional

Dimensées Reais Métricas Calculadas Dimensoes em Pixels

Area 6.15cm?

Circularidade 0.832 Area 25139 px*
Perimetro 9.63 cm
Solidez 0.983 Perimetro 616 px
Largura 3.28cm
Attura 2.49 em Pixels 25405 Dimensses 210 x 159 px
< Andlise Cromatica
Sistema RYB (Red-Yellow-Black)
B Red (vermelno) 39.1%
Yellow (Amarelo) 60.9%
B sk Preto) 0.0%
Cores Detectadas (K-Means) - 5 cores
#F7DCB1 #F0C098 #D3716D #E49787 #BE4B51
30.95% 28.17% 16.01% 14.64% 10.24%
& Nova Anilise

Fonte: Autores

A interface de resultados estd organizada em secgbes distintas que

apresentam:

e Visualizagbes graficas (parte superior): Trés componentes visuais

apresentados lado a lado - a imagem original do ferimento isolado, o grafico



de distribuicdo cromatica em formato de pizza, e a imagem reconstruida onde
cada pixel é colorido de acordo com o cluster identificado pelo algoritmo
K-Means. Esta apresentagao visual permite compreensao imediata tanto da
aparéncia real do ferimento quanto de sua composicdo cromatica
quantificada.

Classificagdo cromatica: O sistema apresenta a distribuicdo segundo o
sistema RYB (Red-Yellow-Black), indicando os percentuais de tecido de
granulacao (vermelho), exsudato ou tecido desvitalizado (amarelo), e necrose
(preto). Adjacente a classificacdo RYB, é exibida a paleta detalhada das cores
dominantes identificadas pelo K-Means, com seus codigos hexadecimais e
percentuais especificos, oferecendo caracterizagdo cromatica em dois niveis
de detalhamento.

Métricas em pixels: Apresenta as medidas brutas obtidas diretamente do
processamento da imagem: area em pixels quadrados, perimetro em pixels,
quantidade total de pixels do ferimento, e dimensdes do bounding box (menor
retdngulo que envolve o ferimento). Estas informagdes sao uteis para
referéncia técnica e verificacdo do processamento.

Métricas calculadas: Exibe os indices de circularidade e solidez, ambos
variando de 0 a 1. A circularidade indica quao proxima a forma do ferimento
estda de um circulo perfeito (valor 1 = circulo perfeito, valores menores =
formas mais irregulares ou alongadas). A solidez indica o grau de
"preenchimento” da forma (valor 1 = forma totalmente convexa, valores
menores = presenga de reentrancias ou concavidades).

Dimensbes reais calibradas: Apresenta as medidas clinicamente mais
relevantes, convertidas para unidades reais através do fator de calibragao
obtido pelo adesivo de referéncia: area total em centimetros quadrados,
perimetro em centimetros, e dimensdes aproximadas (largura e altura) em
centimetros. Estas sdo as meétricas primarias para acompanhamento clinico
da evolugdo do ferimento. Esta organizagdo permite acesso rapido as
informagdes mais relevantes clinicamente (area em cm?, classificagdo RYB)
mantendo disponiveis os detalhes técnicos para analises mais aprofundadas

quando necessario.



A partir da interface apresentada na figura 30, & possivel observar
concretamente os resultados obtidos pelo sistema Bio-CV em um caso real de
processamento. A analise dimensional revela informagbes precisas sobre as
caracteristicas geométricas do ferimento processado. O sistema calculou uma area
real de 6.15 centimetros quadrados, com perimetro de 9.63 centimetros, indicando
um ferimento de dimensdes moderadas.

As medidas de largura e altura, 3.28 centimetros e 2.49 centimetros
respectivamente, sugerem uma forma ligeiramente alongada no eixo horizontal. Em
termos de resolugao digital, o ferimento ocupa 25405 pixels da imagem capturada,
distribuidos em uma area de 25139 pixels quadrados com perimetro de 616 pixels, e
dimensdes em pixels de 210 por 159.

As métricas calculadas fornecem informacdes adicionais sobre a morfologia
do ferimento. O indice de circularidade de 0.832 indica que a forma se aproxima
razoavelmente de um circulo, embora ndo seja perfeitamente circular, sugerindo
algum grau de irregularidade nas bordas.

A solidez de 0.983 demonstra que o ferimento possui contorno relativamente
convexo, com poucas reentrancias ou concavidades significativas, o que pode ser
um indicador positivo do processo de cicatrizacdo. Estes indices morfométricos,
combinados com as dimensdes absolutas, permitem caracterizagdo objetiva da
geometria da leséo.

A analise cromatica automatica revelou caracteristicas importantes sobre a
composicao tecidual do ferimento. Segundo a classificagdo RYB, o sistema
identificou 39.1% de componente vermelho, associado ao tecido de granulagcéo
saudavel, e 60.9% de componente amarelo, relacionado a presenga de exsudato ou
tecido desvitalizado. Notavelmente, ndo foi detectada presenca de tecido necrético
(componente preto), o que pode indicar um ferimento em processo ativo de
cicatrizacdo, sem areas de necrose estabelecida. Esta distribuicdo cromatica
quantificada oferece base objetiva para avaliacdo do estado evolutivo da lesao.

O algoritmo K-Means identificou cinco cores dominantes na imagem do

ferimento, fornecendo detalhamento adicional da composigao cromatica. A cor mais

prevalente, com codigo hexadecimal #F7DCB1 e representando 30.95% da area,

corresponde a tonalidade bege clara. A segunda cor mais frequente, #F0C098 com

28.17%, apresenta tom péssego claro. As tonalidades avermelhadas aparecem em



trés intensidades distintas: #D3716D com 16.01%, #E49787 com 14.64%, e

#BE4B51 com 10.24%, variando de vermelho rosado a vermelho mais intenso. Esta
paleta detalhada complementa a classificacdo RYB simplificada, permitindo analise
cromatica em multiplos niveis de granularidade conforme a necessidade clinica ou
de pesquisa.

A integracao de todas essas informagdes em uma unica interface demonstra a
capacidade do sistema Bio-CV de realizar andlise abrangente e multidimensional de
ferimentos cutadneos. De forma que uma unica analise disponibilizou todas as
informacgdes discorridas nos paragrafos anteriores.

A disponibilidade simultdnea de métricas simplificadas para uso clinico
imediato e de dados técnicos detalhados para analises aprofundadas torna o
sistema versatil o suficiente para atender diferentes necessidades, desde o
acompanhamento de rotina em ambiente clinico até aplicagbes em pesquisa

cientifica sobre processos de cicatrizagao.

6. Consideragdes Finais

O presente trabalho apresentou o desenvolvimento do Bio-CV, um sistema de
visdo computacional para analise automatizada de ferimentos cutaneos, integrando
técnicas de processamento de imagem e para fornecer avaliagdes objetivas e
padronizadas de lesdes. A pesquisa demonstrou que é possivel substituir métodos
tradicionais de avaliagdo, frequentemente subjetivos e imprecisos, por uma
abordagem tecnolégica que oferece mensuragdo quantitativa, reprodutivel e
acessivel.

A implementacdo dos trés algoritmos principais - segmentagdo por
limiarizacdo de cor, deteccao e calibragcdo através de marcador de referéncia, e
classificagdo cromatica pelo método K-Means - mostrou-se eficaz na extragdo de
informacdes relevantes sobre dimensdes reais, morfologia e cromatica do ferimento.

A utilizagdo de um adesivo como elemento de calibragdo revelou-se uma
solugéo pratica e de baixo custo, permitindo conversao precisa de medidas digitais
para unidades reais sem necessidade de equipamentos especializados. A interface
desktop desenvolvida garante acesso simplificado aos dados, possibilitando uso em

diferentes contextos clinicos.



Os resultados obtidos evidenciam que o sistema consegue realizar analises
de ferimentos de forma rapida e intuitiva, apresentando métricas dimensionais
calibradas em centimetros, indices como circularidade e solidez, e distribuigao
cromatica segundo o sistema RYB amplamente utilizado na avaliagdo clinica de
feridas. A classificacdo detalhada de cores dominantes pelo K-Means complementa
a analise, oferecendo granularidade adicional quando necessaria para pesquisa ou
acompanhamento mais minucioso.

A padronizacao das medicdes favorece a comunicagao entre profissionais de
saude e a comparagao temporal da evolugao das lesbes, fundamentais para tomada
de decisbes terapéuticas baseadas em evidéncias. Além disso, a documentagao
digital automatica facilita a manutencdo de registros completos e organizados,
atendendo tanto necessidades assistenciais quanto de pesquisa cientifica.

E preciso considerar que apesar dos resultados positivos, o trabalho
apresenta limitagdes que devem ser consideradas. O sistema foi desenvolvido e
testado com conjunto limitado de imagens, sendo necessaria validagao mais ampla
com diferentes tipos de ferimentos, condigées de iluminagdo e caracteristicas de
pele.

A validacdo quantitativa comparativa — que envolveria a comparacao
direta entre as medi¢cbes automatizadas pelo Bio-CV e mensuragdes reais
obtidas por métodos padronizados em ambiente clinico controlado podera ser

objeto de estudos futuros.

Juntamente a sugestdo do paragrafo anterior ha a expansdo do banco de
dados de imagens para validagdo mais robusta dos algoritmos, incluindo diferentes
etnias, tipos de lesdo e estagios de cicatrizagdo, bem como estudos clinicos
comparativos entre avaliagdes manuais e automatizadas seriam fundamentais para
validacao cientifica do método.

Retomando a hipétese inicial deste trabalho, que propunha ser possivel
desenvolver um sistema de visdo computacional capaz de analisar automaticamente
ferimentos cutaneos a partir de imagens fotograficas, fornecendo medigdes objetivas
de dimensdes e classificagdo cromatica de forma acessivel e sem necessidade de
equipamentos especializados, pode-se afirmar que ela foi plenamente confirmada.

O Bio-CV comprovou, através de sua implementacdo funcional e dos

resultados apresentados, que técnicas consolidadas de processamento de imagem,



sao capazes de extrair informacdes quantitativas precisas sobre ferimentos cutaneos
de maneira automatica e reprodutivel. O sistema nao pretende substituir a avaliagao
clinica do profissional de saude, mas sim atuar como ferramenta auxiliar que
complementa o julgamento clinico com dados objetivos e padronizados.

Embora desafios permanegcam em termos de validagdo clinica ampla e
refinamento continuo dos algoritmos, o Bio-CV demonstra que a viséo
computacional pode efetivamente apoiar profissionais da saude no
acompanhamento de ferimentos cutaneos, fornecendo subsidios mensuraveis que
auxiliam na tomada de decisdes e na documentagao sistematizada da evolugao das

lesodes.

7. Referéncias

ALONSO, M. C. et al. Comparison of Wound Surface Area Measurements Obtained
Using Clinically Validated Artificial Intelligence-Based Technology Versus Manual
Methods and the Effect of Measurement Method on Debridement Code
Reimbursement Cost. Wounds, v. 35, n. 10, p. E330-E338, out. 2023.

BARBOSA, Fellipe Matheus Costa. Medigao precisa de areas de feridas cronicas
usando Structure from Motion. 2020. 111 f. Dissertacdo (Mestrado em Sistemas e
Computacgéo) — Centro de Ciéncias Exatas e da Terra, Universidade Federal do Rio
Grande do Norte, Natal, 2020.

BARELLI, F. Introducdao a visao computacional: uma abordagem pratica com
Python e OpenCV. Sao Paulo: Casa do Cdédigo, 2018.

CALIRI, M. H. L. Galeria de fotografias. In: GRUPO DE ESTUDOS E PESQUISA EM
SEGURANCA DO PACIENTE. Feridas cronicas. Ribeirdo Preto, 2020.

DELAI, R. L.; COELHO, A. D. Visao computacional com a OpenCV: material
apostilado e veiculo seguidor autbnomo. Sao Caetano do Sul: Escola de Engenharia
Maua, [s.d.]. Apostila.

ESPIRITO SANTO, P. F. et al. Uso da ferramenta Pressure Ulcer Scale for Healing
para avaliar a cicatrizagdo de Uulcera crénica de perna. Revista Brasileira de
Cirurgia Plastica, v. 28, n. 1, p. 133-141, mar. 2013.

GOYAL, M. et al. Recognition of ischaemia and infection in diabetic foot ulcers:
Dataset and techniques. Computers in Biology and Medicine, v. 117, article
103616, 2020.

GUO, S.; DIPIETRO, L. A. Factors Affecting Wound Healing. Journal of Dental
Research, v. 89, n. 3, p. 219-229, 2010.



KUNDU, R. Image Processing: Techniques, Types, & Applications. V7 Labs Blog, 3
ago. 2024. Disponivel em: https://www.v7labs.com/blog/image-processing-quide.
Acesso em: 20 nov. 2025.

LEE, C. H. et al. Automated Image-Based Wound Area Assessment in Outpatient
Clinics Using Computer-Aided Methods: A Development and Validation Study.
Journal of Clinical Medicine, v. 13, n. 11, 2024.

LI, K.-C.; LEE, Y.-H.; LIN, Y.-H. Automated Image-Based Wound Area Assessment in
Outpatient Clinics Using Computer-Aided Methods: A Development and Validation
Study. Medicina, v. 61, n. 6, p. 1099, 2025.

LISBOA, K. O. et al. A histdria da telemedicina no Brasil: desafios e vantagens.
Saude e Sociedade, v. 32, n. 1, 2023.

MANDELBAUM, S. H.; DI SANTIS, E. P.; MANDELBAUM, M. H. S. Cicatrizag&o:
conceitos atuais e recursos auxiliares. Anais Brasileiros de Dermatologia, v. 78, n.
4, p. 393-410, 2003.

MARIA DA SILVA, G. et al. Conhecimento dos profissionais de saude quanto ao
processo cicatricial de feridas. Congresso Brasileiro de Estomaterapia, [S. 1],
2024. Disponivel em: https://anais.sobest.com.br/cbe/article/view/631. Acesso em:
15 jan. 2025.

MARQUES DA SILVA, Ana Maria; PATROCINIO, Ana Claudia; SCHIABEL, Homero.
Processamento e Analise de Imagens Médicas. Revista Brasileira de Fisica
Médica, [S. I.], v. 13, n. 1, p. 34-48, 2019. DOI: 10.29384/rbfm.2019.v13.n1.p34-48.
Disponivel em: https://www.rbfm.org.br/rbfm/article/view/525. Acesso em: 14 fev.
2025.

MIRZAALIAN DASTJERDI, H. et al. Measuring Surface Area of Skin Lesions with 2D
and 3D Algorithms. International Journal of Biomedical Imaging, v. 2019, article
4035148, 2019.

MONTEIRO DE MENEZES, Stéfani; KELLY BORGES FONSECA, Anny; MOREIRA
DE MATOS, Neuza. Perfil de pacientes com lesdes cutaneas hospitalizados em uma
unidade de internagdo de clinica médica. Health Residencies Journal, [S. I.], v. 3,
n. 15, p. 95-108, 2022. DOIl: 10.51723/hrj.v3i15.426. Disponivel em:
https://hri.emnuvens.com.br/hrj/article/view/426. Acesso em: 8 jan. 2025.

NAGLE, S. M.; STEVENS, K. A.; WILBRAHAM, S. C. Wound Assessment. In:
StatPearls. Treasure lIsland (FL): StatPearls Publishing, 2023. Disponivel em:
https://www.ncbi.nlm.nih.gov/books/NBK482198/. Acesso em: 5 jan. 2025.

PONTES, W. F. Tecnologias para mensuracao de feridas cronicas: revisdo
integrativa. 2023. Trabalho de Conclusao de Curso (Graduagao em Enfermagem) —
Escola de Enfermagem, Universidade Federal de Alagoas, Maceid, 2023.

SABRY, F. Visao computacional: explorando percepcao inteligente e tomada de
decisdo em sistemas autonomos. [S.l.]: One Billion Knowledgeable, 2024. (Ciéncia
da Robdtica, v. 36).


https://www.v7labs.com/blog/image-processing-guide
https://anais.sobest.com.br/cbe/article/view/631
https://www.rbfm.org.br/rbfm/article/view/525
https://hrj.emnuvens.com.br/hrj/article/view/426
https://hrj.emnuvens.com.br/hrj/article/view/426
https://www.ncbi.nlm.nih.gov/books/NBK482198/
https://www.ncbi.nlm.nih.gov/books/NBK482198/

SANTOS, Isabel et al. Usabilidade do sistema de classificacdo de feridas por cor —
ryb wound classification system. Ciéncia, Cuidado e Saude, v. 16, n. 4, 2017. DOI:
10.4025/cienccuidsaude.v16i4.34436.

SHI, C. et al. Assessing chronic wound tissue composition using smartphone image
analysis and color-based clustering. International Wound Journal, v. 16, n. 1, p.
211-220, 2019.

SOMMERVILLE, I. Engenharia de software. Traducdo de lvan Bosnic e Kalinka G.
de O. Gongalves. 9. ed. Sdo Paulo: Pearson Prentice Hall, 2011.

TAVARES, A. R. et al. Visdo computacional na saude: revisao de métodos e desafios
educacionais para integracdo multidisciplinar. Cuadernos de Educacion vy
Desarrollo, [S. I.], v. 16, n. 13, p. 7088, 2024. DOI: 10.55905/cuadv16n13-169.
Disponivel em:
https://ojs.cuadernoseducacion.com/ojs/index.php/ced/article/view/7088. Acesso em:
14 fev. 2025.

TOTTOLI, E. M. et al. Skin Wound Healing Process and New Emerging Technologies
for Skin Wound Care and Regeneration. Pharmaceutics, v. 12, n. 8, p. 735, 5 ago.
2020. DOI: 10.3390/pharmaceutics12080735. PMID: 32764269; PMCID:
PMC7463929.

TUTORIAL: introdugcdo a visao computacional usando OpenCV. Revista de
Informatica Tedérica e Aplicada, v. 16, n. 1, mar. 2010. DOl
10.22456/2175-2745.11477. Disponivel em:
https://seer.ufrgs.br/index.php/rita/article/view/11477. Acesso em: 20 fev. 2025.

VIGNERON, A.; DOMINGOS, C. Lesao cutanea: abordagem do enfermeiro
direcionada aos cuidados. 2021. Trabalho de Conclusdo de Curso (Graduagdo em
Enfermagem) — Faculdade de Filosofia, Ciéncias e Letras Dom Bosco, 2021.

WANG, C. et al. Fully automatic wound segmentation with deep convolutional neural
networks. Scientific Reports, v. 10, n. 1, p. 21897, 2020. DOI:
https://doi.org/10.1038/s41598-020-78799-w.

WANG, L. et al. A smartphone-based multi-functional continuous monitoring and
analysis system for diabetic foot ulcers. Journal of Diabetes Science and
Technology, v. 10, n. 4, p. 952-961, 2016.

WEIGELT, M. A. et al. Advanced Wound Diagnostics: Toward Transforming Wound
Care into Precision Medicine. Advanced Wound Care, v. 11, n. 6, p. 330-359, 2022.
DOI: 10.1089/wound.2020.1319.

WU, W. L. et al. The APD Skin Monitoring App for wound monitoring: Image
processing, area plot, and colour histogram. Scientific Phone Apps and Mobile
Devices, v. 5, article 3, 2019.

YADAV, M. K. et al. Segmentation of chronic wound areas by clustering techniques
using selected color space. Journal of Medical Imaging and Health Informatics, v.
3,n.1, p. 22-29, 2013.


https://ojs.cuadernoseducacion.com/ojs/index.php/ced/article/view/7088
https://ojs.cuadernoseducacion.com/ojs/index.php/ced/article/view/7088
https://seer.ufrgs.br/index.php/rita/article/view/11477
https://seer.ufrgs.br/index.php/rita/article/view/11477
https://doi.org/10.1038/s41598-020-78799-w
https://doi.org/10.1038/s41598-020-78799-w

ZHU, X. et al. Health-related quality of life and chronic wound characteristics among
patients with chronic wounds treated in primary care: A cross-sectional study in
Singapore. International Wound Journal, v. 19, n. 5, p. 1121-1132, 2022.



	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Resumo 
	Abstract 
	LISTA DE FIGURAS 
	LISTA DE SIGLAS 
	SUMÁRIO 
	1.​Introdução 
	1.1. Problema 
	1.2. Hipótese 
	1.3. Justificativa  
	1.4. Objetivo Geral 
	1.5. Objetivos Específicos 

	2. Fundamentação Teórica 
	2.1. Ferimentos cutâneos 
	2.2 Tecnologia e saúde 
	2.2.1 Trabalhos Correlatos 
	●​Sistema Automático de Avaliação de Úlceras do Pé Diabético 
	●​Monitoramento Domiciliar de Feridas com Análise de Espaço de Cor HSV 
	●​Reconhecimento de Isquemia e Infecção em Úlceras Diabéticas por Métodos Híbridos 

	Goyal et al. (2020) apresentaram o primeiro dataset público para reconhecimento de isquemia e infecção em úlceras do pé diabético (DFU), introduzindo 1459 imagens com ground truth estabelecido por dois especialistas médicos. Os autores investigaram tanto técnicas clássicas de visão computacional quanto deep learning para classificação binária dessas condições críticas que afetam o prognóstico e risco de amputação. 
	Para a abordagem clássica, os autores propuseram um novo descritor denominado Superpixel Colour Descriptor (SPCD), especificamente desenvolvido para extrair características de cor relevantes para identificação visual de isquemia e infecção. O método inicia com sobre-segmentação da imagem utilizando a técnica SLIC (Simple Linear Iterative Clustering), que realiza otimização de k-means localizada no espaço 5D CIELAB para agrupar pixels baseado em cor e intensidade.  
	Com k=200 superpixels para patches de 256×256 pixels, o valor RGB médio de cada superpixel é calculado e aplicado. Utilizando diferentes valores de threshold, o algoritmo extrai regiões de duas cores particulares de interesse: vermelho (indicativo de inflamação/perfusão) e preto (indicativo de necrose/gangrena), gerando um vetor de características com 10 dimensões que foi combinado com descritores clássicos de textura (LBP, HOG) e cor (RGB, CIELAB) para treinar classificadores tradicionais como BayesNet, Random Forest e Multilayer Perceptron. 
	Os autores também introduziram uma técnica de Natural Data-Augmentation baseada em localização profunda de feridas usando Faster R-CNN com InceptionResNetV2, que identifica automaticamente a região de interesse (ROI) da úlcera nas imagens completas do pé. Como aproximadamente 92% das úlceras ocupam entre 0-20% da área total da imagem, técnicas convencionais de augmentation (random crop, scale, translation) apresentam risco de perder a ROI. A Natural Data-Augmentation aplica magnificações progressivas centradas na ferida detectada, seguidas de transformações adicionais (rotação, espelhamento, ruído gaussiano, ajustes de contraste), focando o aprendizado nas características salientes da região ulcerada. 
	Para comparação, foram testados modelos de deep learning com transfer learning (Inception-V3, ResNet50, InceptionResNetV2) e um modelo Ensemble CNN que combina bottleneck features de múltiplas CNNs com classificador SVM. O dataset foi dividido em 70% treino, 10% validação e 20% teste com validação cruzada 5-fold. 
	Os resultados demonstraram que métodos de deep learning superaram significativamente as abordagens clássicas em ambas as tarefas. Na classificação de isquemia, o Ensemble CNN alcançou 90,3% de acurácia, MCC de 0,807 e AUC de 0,904, enquanto os métodos clássicos obtiveram 78-80% de acurácia. Na classificação de infecção (tarefa mais desafiadora), o Ensemble CNN atingiu 72,7% de acurácia com MCC de 0,454, comparado a 60-64% dos métodos tradicionais. Curiosamente, mesmo com dataset mais desbalanceado, a classificação de isquemia apresentou desempenho superior (acurácia média de 83,3%) em relação à infecção (65,8%), sugerindo que indicadores visuais de isquemia (má perfusão, gangrena) são mais distintivos nas imagens do que os de infecção. 
	Os autores reconhecem que a classificação de infecção a partir de imagens é particularmente desafiadora porque: (1) as imagens foram capturadas após debridamento, removendo indicadores importantes como exsudato purulento; (2) sinais visuais de inflamação podem ser sutis; (3) o gold standard diagnóstico requer testes sanguíneos e bacteriológicos, não apenas inspeção visual. Eles sugerem que ground truth baseado em testes clínicos objetivos (avaliação vascular para isquemia, exames de sangue para infecção) poderia melhorar significativamente a sensibilidade e especificidade dos algoritmos. 
	Este trabalho é notável por representar a transição entre métodos clássicos e deep learning na análise de úlceras diabéticas, propondo técnicas clássicas inovadoras (SPCD, Natural Data-Augmentation) enquanto demonstra empiricamente a superioridade do deep learning para este problema específico. O dataset público disponibilizado constitui importante contribuição para pesquisas futuras na área. 
	 
	●​Sistema APD Skin Monitoring para Monitoramento de Feridas 
	●​Segmentação de Feridas Crônicas por Clustering em Espaço de Cor Otimizado 
	2.2.2 Visão Computacional  
	2.2.3. Visão Computacional na Saúde 
	2.2.4. Open Source Computer Vision 
	2.2.5. Técnicas de Visão computacional para análise de imagens 
	2.2.6. Técnicas de Visão Computacional para Análise de Cores 


	A análise cromática constitui uma etapa fundamental na caracterização de ferimentos, permitindo identificar, quantificar e interpretar as cores presentes na região lesionada. Essas informações são relevantes para avaliação do estágio de cicatrização, detecção de sinais de infecção e monitoramento da evolução do tratamento. Nesse contexto, o sistema Red/Yellow/Black (RYB) proposto por Cuzzel para classificação de feridas se mostra um instrumento clínico valioso, pois permite categorizar as lesões de acordo com a sua coloração, que geralmente reflete o equilíbrio entre tecidos novos e tecidos necrosados (MANDELBAUM; DI SANTIS; MANDELBAUM, 2003). As técnicas de visão computacional aplicadas à análise de cores envolvem conversão entre espaços de cores, segmentação cromática e algoritmos de clustering para identificação de cores dominantes. 
	Antes de iniciar a análise cromática, é necessário isolar a região de interesse e remover elementos que possam interferir nos resultados, como fundos escuros provenientes de etapas anteriores de segmentação. A remoção de pixels indesejados pode ser realizada através de threshold , onde pixels com intensidade abaixo de um limiar são identificados e substituídos. O código abaixo exemplifica essa operação: 
	gray = cv2.cvtColor(imagem, cv2.COLOR_BGR2GRAY) 
	 
	_, mask = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) 
	 
	mask_inv = cv2.bitwise_not(mask) 
	 
	img_sem_fundo = imagem.copy() 
	img_sem_fundo[mask_inv == 255] = [255, 255, 255] 
	Essa abordagem garante que apenas os pixels pertencentes ao ferimento sejam considerados nas análises subsequentes. A Figura 14 ilustra o resultado da remoção de fundo. 
	hsv = cv2.cvtColor(imagem, cv2.COLOR_BGR2HSV) 
	h, s, v = cv2.split(hsv) 
	 
	lab = cv2.cvtColor(imagem, cv2.COLOR_BGR2LAB) 
	l, a, b = cv2.split(lab) 
	Os canais H (matiz) e S (saturação) do espaço HSV permitem identificar características como áreas de maior pigmentação e regiões saturadas. O canal V (valor/brilho) auxilia na detecção de variações de luminosidade que podem sugerir presença de exsudato. No espaço Lab, o canal L representa a luminância, enquanto os canais A (eixo verde-vermelho) e B (eixo azul-amarelo) capturam informações cromáticas independentes da iluminação. A Figura 15  apresenta exemplos dos seis canais extraídos. 
	3. Metodologia  
	Este trabalho adota uma abordagem de desenvolvimento ágil e iterativo, fundamentada na aplicação de dois ciclos PDCA (Plan-Do-Check-Act) para garantir a qualidade e eficácia da solução proposta. Dentro da fase de execução de cada ciclo foi utilizado o PDSII (Processo Iterativo e Incremental de Desenvolvimento de Software). 
	3.1 PDCA 
	3.2 PDSII 
	3.2 Primeiro Ciclo PDCA - Desenvolvimento Dos Algoritmos 
	3.2.1 PLAN (Planejar) 
	3.2.2 DO (Fazer) 
	3.2.3 CHECK (Verificar) 
	3.2.4 ACT (Agir) 

	3.3 Segundo Ciclo PDCA - Interface E Integração 
	3.3.1 PLAN (Planejar) 
	3.3.2 DO (Fazer) 
	3.3.3 CHECK (Verificar)  
	3.3.4 ACT (Agir)  


	4. Solução 
	4.1 Requisitos do Sistema 
	4.1.1 Requisitos funcionais 
	4.1.2 Requisitos não funcionais 

	4.2 Arquitetura do Sistema 
	4.2.1 Organização dos Módulos 
	4.2.2 Fluxo de Dados 

	4.3 Módulo de Processamento de Imagem 
	4.3.1 Algoritmo de Detecção de Bordas 
	4.3.2 Cálculo de Área 
	4.3.3 Análise Cromática 

	4.4 Interface Gráfica 
	4.5 Integração e Funcionamento 
	A integração entre os módulos do sistema BIO-CV ocorre de forma coordenada e automatizada, garantindo a fluidez do processo de análise e a consistência dos resultados. O sistema foi arquitetado para que cada módulo desempenhe sua função específica de maneira independente, mas integrada através de interfaces bem definidas e simples que facilitam a comunicação e o compartilhamento de dados. 
	O fluxo operacional inicia-se com a autenticação do usuário no módulo de login, que valida as credenciais e estabelece a sessão de trabalho. Uma vez autenticado, o usuário acessa o módulo de gerenciamento de pacientes, onde pode selecionar um paciente existente ou cadastrar um novo registro. Esta integração com o banco de dados MySQL garante que todas as informações sejam persistidas de forma segura e organizada. 
	Ao submeter uma nova imagem para análise, o sistema aciona automaticamente o módulo de processamento de imagens, que executa sequencialmente os algoritmos de detecção de bordas, cálculo de área e análise cromática. 
	Os resultados obtidos pelo módulo de processamento são então estruturados e enviados ao módulo de persistência, que realiza a inserção dos dados no banco de dados, associando-os ao registro do paciente e ao ferimento específico, juntamente com o timestamp da análise. Esta integração permite que o histórico completo de mensurações fique disponível para consultas futuras e análises comparativas. 
	Finalmente, o módulo de visualização recupera os dados armazenados e os apresenta de forma organizada e de fácil entendimento na interface gráfica, utilizando componentes visuais como tabelas, gráficos e imagens processadas. Esta apresentação integrada permite que o usuário tenha uma visão completa e objetiva do estado atual do ferimento e de sua evolução ao longo do tratamento. 
	A arquitetura integrada do sistema garante que todo o fluxo, iniciando da captura da imagem até a exibição dos dados obtidos pela análise, ocorra de forma fluida e transparente, minimizando a necessidade de intervenção manual. 


	5. Resultados e discussões 
	5.1 Considerações Iniciais sobre a Validação 

	O presente trabalho propôs-se a investigar a viabilidade do desenvolvimento de um sistema capaz de analisar ferimentos cutâneos de forma automatizada mediante registros fotográficos. Para responder à questão de pesquisa levantada: "É possível desenvolver um sistema que analisa ferimentos cutâneos de forma automatizada por meio de imagens fotográficas?", foi desenvolvido o Bio-CV, um sistema desktop que integra técnicas de visão computacional para mensuração de área e identificação de cores em ferimentos. 
	A validação realizada nesta etapa da pesquisa concentrou-se em demonstrar a viabilidade técnica e funcional da solução proposta. Para isso, foram conduzidos testes com 50 imagens do datasets públicos previamente citados, avaliando a capacidade do sistema em executar as funções para as quais foi projetado: segmentar ferimentos em imagens fotográficas, calcular áreas relativas através de calibração com adesivo de referência, e quantificar a distribuição cromática segundo padrões clinicamente relevantes. 
	É importante destacar que esta primeira versão do Bio-CV foi validada através de análise visual qualitativa, com foco na funcionalidade dos algoritmos implementados e na consistência dos resultados gerados. A abordagem adotada consistiu em verificar se o sistema é capaz de produzir segmentações visualmente coerentes, medições reprodutíveis e análises cromáticas que correspondam à aparência visual dos ferimentos processados. 
	Dessa forma, os resultados apresentados nas seções seguintes concentram-se em demonstrar que: 
	1.​O sistema é funcionalmente operacional, executando todas as etapas propostas de forma automatizada; 
	2.​Os algoritmos implementados são capazes de processar imagens reais de ferimentos com diferentes características; 
	3.​Os resultados gerados são visualmente coerentes e internamente consistentes, apresentando potencial para aplicação clínica após validação quantitativa; 
	4.​A abordagem baseada em visão computacional é tecnicamente viável para a análise automatizada de ferimentos cutâneos. 
	A próxima seção apresenta a validação funcional de cada algoritmo de processamento de imagem do sistema, seguida pela análise de casos específicos que ilustram o comportamento do sistema Bio-CV em diferentes cenários clínicos. 
	5.2 Validação Funcional dos Algoritmos de Processamento de imagem  
	5.2.1 Algoritmo de Detecção de Bordas com Active Contour 
	5.2.2 Algoritmo de Cálculo de área 
	5.2.3 Algoritmo de Análise Cromática 

	5.3 Apresentação dos Resultados Integrados do Sistema 

	6. Considerações Finais 
	A validação quantitativa comparativa – que envolveria a comparação direta entre as medições automatizadas pelo Bio-CV e mensurações reais obtidas por métodos padronizados em ambiente clínico controlado poderá ser objeto de estudos futuros. 
	7. Referências 

