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Resumo 

Feridas cutâneas representam um problema de saúde pública que afeta milhões de 

pessoas, causando desconforto e gerando custos elevados ao sistema de saúde. O 

acompanhamento adequado dessas lesões é fundamental para monitorar o 

processo de cicatrização. Apesar dos avanços tecnológicos, a mensuração de 

feridas ainda é realizada predominantemente de forma manual, utilizando réguas 

descartáveis ou folhas de acetato, métodos que apresentam baixa precisão, 

resultados subjetivos e podem representar riscos de infecção ao paciente. Este 

trabalho investigou o desenvolvimento de um sistema capaz de analisar ferimentos 

cutâneos de forma automatizada por meio de imagens fotográficas. A hipótese 

central sustenta que a Visão Computacional viabiliza o desenvolvimento de um 

sistema capaz de mensurar a área do ferimento e reconhecer as cores presentes na 

lesão. O objetivo geral foi desenvolver um sistema capaz de medir a área do 

ferimento e identificar as cores presentes de forma automatizada mediante registros 

fotográficos. Os objetivos específicos incluíram: implementar um algoritmo que 

identifica o ferimento; desenvolver uma função para calcular automaticamente a 

área; criar um módulo para identificar as cores; e integrar uma interface gráfica para 

visualização dos resultados. O sistema Bio-CV foi desenvolvido utilizando Python, 

OpenCV e técnicas clássicas de visão computacional, implementando três 

algoritmos principais: segmentação por Active Contour para detecção de bordas, 

calibração através de adesivo de referência (1 cm²) para cálculo de área real, e 

clustering K-Means para análise cromática segundo o sistema RYB. Os testes com 

50 imagens de datasets públicos demonstraram que o sistema consegue segmentar 

ferimentos com diferentes morfologias, fornecendo métricas dimensionais (área, 

perímetro, circularidade, solidez), quantificação cromática objetiva, e interface 

integrada para visualização dos resultados. O trabalho confirma a viabilidade técnica 

da análise automatizada de ferimentos cutâneos, oferecendo potencial para maior 

precisão, diminuição no risco de contaminação e melhoria na qualidade de vida dos 

pacientes. 

Palavras-chave: Feridas cutâneas, Visão computacional, Mensuração 

automatizada,  Análise de imagens.  

 

 



 

Abstract 

Cutaneous wounds represent a public health problem affecting millions of people, 

causing discomfort and generating high healthcare costs. Adequate monitoring of 

these injuries is fundamental for healing process assessment. Despite technological 

advances, wound measurement is still performed predominantly manually using 

disposable rulers or acetate sheets, methods presenting low precision, subjective 

results, and infection risks. This work investigated developing a system capable of 

automatically analyzing cutaneous wounds through photographic images. The central 

hypothesis maintains that Computer Vision enables developing a system capable of 

measuring wound area and recognizing colors present in the lesion. The general 

objective was to develop a system capable of measuring wound area and identifying 

colors automatically through photographic records. Specific objectives included: 

implementing an algorithm that identifies wounds; developing a function to 

automatically calculate area; creating a module to identify colors; and integrating a 

graphical interface for results visualization. The Bio-CV system was developed using 

Python, OpenCV and classical computer vision techniques, implementing three main 

algorithms: Active Contour segmentation for edge detection, calibration through 

reference sticker (1 cm²) for real area calculation, and K-Means clustering for 

chromatic analysis according to the RYB system. Tests with 50 images from public 

datasets demonstrated that the system can segment wounds with different 

morphologies, providing dimensional metrics (area, perimeter, circularity, solidity), 

objective chromatic quantification, and integrated interface for results visualization. 

The work confirms the technical feasibility of automated cutaneous wound analysis, 

offering potential for greater precision, decreased contamination risk, and improved 

patient quality of life. 

Keywords: Cutaneous wounds, Computer vision, Automated measurement, Image 
analysis.  

 

 

 

 

 
 



 

LISTA DE FIGURAS 
 

Figura 01: Ferimento cutâneo …………………………................................................ 7 

Figura 02: Mensuração com o uso de régua descartável …....................................... 9 

Figura 03: Representação do Sistema RYB ............................................................. 11 

Figura 04: Tumor cerebral detectado através de visão computacional ……............. 23 

Figura 05: Imagem original de lesão por pioderma gangrenoso utilizada para 
demonstração do método de segmentação ............................................................. 24 

Figura 06: Região de interesse (ROI) delimitada manualmente sobre a lesão…..... 25 

Figura 07: Imagem convertida para escala de cinza ............................................... 26 

Figura 08: Imagem após aplicação do filtro Gaussiano (kernel 5x5) ....................... 26 

Figura 09: Contorno inicial (elipse) para o algoritmo Active Contour ....................... 27 

Figura 10: Contorno final após convergência do Active Contour ............................. 28 

Figura 11: Máscara binária da região segmentada .................................................. 29 

Figura 12: Ferimento isolado após aplicação da máscara ....................................... 30 

Figura 13: Visualização final com overlay do contorno detectado ........................... 31 

Figura 14: Remoção do fundo da imagem ............................................................... 33 

Figura 15: Canais de cores extraídos ....................................................................... 34 

Figura 16: Visualização da distribuição cromática ................................................... 37 

Figura 17: Visualização da quantificação de cores .................................................. 38 

Figura 18: Ilustração do Ciclo PDCA ........................................................................ 39 

Figura 19: Ilustração do PDSII ................................................................................. 40 

Figura 20: Tela de cadastro de ferimento ................................................................. 57 

Figura 21: Tela de envio de imagens ........................................................................ 57 

Figura 22: Tela análise de resultados ....................................................................... 58 

Figura 23: Fluxograma do funcionamento do BIO-CV ............................................. 60 

Figura 24: Resultados da detecção por Active Contour em diferentes tipos de 
ferimentos ................................................................................................................. 62 

 



 

Figura 25: Detecção do adesivo de referência ......................................................... 68 

Figura 26: Visualização das métricas calculadas ..................................................... 69 

Figura 27: Detecção do adesivo de referência ......................................................... 73 

Figura 28: Visualização das métricas calculadas ..................................................... 75 

Figura 29: Interface de processamento do Bio-CV .................................................. 81 

Figura 30: Interface de resultados completos do sistema Bio-CV ............................ 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LISTA DE SIGLAS 

 

ANOVA - Analysis of Variance (Análise de Variância) 

AUC - Area Under the Curve (Área Sob a Curva) 

AZH - Advancing the Zenith of Healthcare 

CNN - Convolutional Neural Network (Rede Neural Convolucional) 

CPU - Central Processing Unit (Unidade Central de Processamento) 

CSV - Comma-Separated Values (Valores Separados por Vírgula) 

DFU - Diabetic Foot Ulcer (Úlcera do Pé Diabético) 

FCM - Fuzzy C-Means 

HOG - Histogram of Oriented Gradients (Histograma de Gradientes Orientados) 

HSL - Hue-Saturation-Lightness (Matiz-Saturação-Luminosidade) 

HSV - Hue-Saturation-Value (Matiz-Saturação-Valor) 

KAC - Krippendorff's Alpha Coefficient (Coeficiente Alpha de Krippendorff) 

Lab - Lightness-a-b (Luminosidade-a-b) 

LBP - Local Binary Pattern (Padrão Binário Local) 

LED - Light-Emitting Diode (Diodo Emissor de Luz) 

MCC - Matthews Correlation Coefficient (Coeficiente de Correlação de Matthews) 

MCP - Model Context Protocol (Protocolo de Contexto de Modelo) 

PPV - Positive Predictive Value (Valor Preditivo Positivo) 

ROI - Region of Interest (Região de Interesse) 

RYB - Red-Yellow-Black (Vermelho-Amarelo-Preto) 

SLIC - Simple Linear Iterative Clustering (Agrupamento Iterativo Linear Simples) 

SPCD - Superpixel Colour Descriptor (Descritor de Cor de Superpixel) 

SVM - Support Vector Machine (Máquina de Vetores de Suporte) 

YCbCr - Luminance-Chrominance Blue-Chrominance Red (Luminância-Crominância 
Azul-Crominância Vermelha) 

 



 

SUMÁRIO 
 

 
1. Introdução.............................................................................................................09 

1.1. Problema........................................................................................................09 
1.2. Hipótese.........................................................................................................09 
1.3. Justificativa.....................................................................................................10 
1.4. Objetivo Geral................................................................................................ 10 
1.5. Objetivos Específicos..................................................................................... 11 

2. Fundamentação Teórica.......................................................................................11 
2.1. Ferimentos cutâneos......................................................................................12 
2.2 Tecnologia e saúde......................................................................................... 16 
      2.2.1 Trabalhos Correlatos..............................................................................16 

2.2.2 Visão Computacional..............................................................................25 
2.2.3. Visão Computacional na Saúde............................................................ 27 
2.2.4. Open Source Computer Vision.............................................................. 28 
2.2.5. Técnicas de Visão computacional para análise de imagens................. 29 
2.2.6. Técnicas de Visão Computacional para Análise de Cores....................38 

3. Metodologia.......................................................................................................... 45 
3.1 PDCA.............................................................................................................. 46 
3.2 PDSII...............................................................................................................47 
3.2 Primeiro Ciclo PDCA - Desenvolvimento Dos Algoritmos...............................48 

3.2.1 PLAN (Planejar)......................................................................................49 
3.2.2 DO (Fazer)..............................................................................................50 
3.2.3 CHECK (Verificar)...................................................................................51 
3.2.4 ACT (Agir)...............................................................................................51 

3.3 Segundo Ciclo PDCA - Interface E Integração............................................... 52 
3.3.1 PLAN (Planejar)......................................................................................53 
3.3.2 DO (Fazer)..............................................................................................53 
3.3.3 CHECK (Verificar)...................................................................................54 
3.3.4 ACT (Agir)...............................................................................................55 

4. Solução..................................................................................................................55 
4.1 Requisitos do Sistema.................................................................................... 56 

4.1.1 Requisitos funcionais..............................................................................56 
4.1.2 Requisitos não funcionais.......................................................................56 

4.2 Arquitetura do Sistema....................................................................................57 
4.2.1 Organização dos Módulos......................................................................57 
4.2.2 Fluxo de Dados.......................................................................................58 

4.3 Módulo de Processamento de Imagem.......................................................... 58 
4.3.1 Algoritmo de Detecção de Bordas..........................................................59 
4.3.2 Cálculo de Área...................................................................................... 60 

 



 

4.3.3 Análise Cromática...................................................................................61 
4.4 Interface Gráfica..............................................................................................62 
4.5 Integração e Funcionamento.......................................................................... 64 

5. Resultados e discussões.....................................................................................67 
5.1 Considerações Iniciais sobre a Validação.......................................................67 
5.2 Validação Funcional dos Algoritmos de Processamento de imagem............. 68 

5.2.1 Algoritmo de Detecção de Bordas com Active Contour..........................68 
5.2.2 Algoritmo de Cálculo de área................................................................. 73 
5.2.3 Algoritmo de Análise Cromática............................................................. 80 

5.3 Apresentação dos Resultados Integrados do Sistema................................... 87 
6. Considerações Finais.......................................................................................... 91 
7. Referências........................................................................................................... 93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1.​ Introdução 

Ferimentos, independente da sua causa primária ou classificação médica, 

representam um grande problema de saúde pública, visto que milhões de pessoas 

são portadoras de algum tipo de lesão. Além de causarem desconforto e diminuírem 

a qualidade de vida das pessoas acometidas, também representam um grande custo 

ao sistema de saúde. 

O acompanhamento dessas lesões é um fator determinante para definir o 

tratamento correto e monitorar o processo de cicatrização, dessa forma garantindo o 

sucesso do tratamento, que resulta na cicatrização da ferida. Dessa forma o rastreio 

do ferimento é indispensável, conhecer as medidas e características do ferimento é 

importante para que se obtenha informações relevantes para o acompanhamento. 

Mesmo com avanços tecnológicos, os profissionais ainda fazem a 

mensuração do ferimento de forma manual, utilizando réguas descartáveis ou folhas 

de acetato. Essas técnicas são pouco precisas, tornam os resultados subjetivos, 

além de está sujeito a erro humano, e representar riscos de infecção e desconforto 

ao paciente.​

 

1.1. Problema 
Esse trabalho se propõe a investigar a possibilidade do desenvolvimento de 

um sistema que busca analisar ferimentos cutâneos por meio de imagens 

fotográficas. Partindo da imagem, as principais informações a serem quantificadas 

são a área do ferimento e as cores presentes no mesmo, provendo uma análise 

automática da lesão. 

Sendo assim, a questão de pesquisa levantada para esse Trabalho de 

Conclusão de Curso foi a seguinte: É possível desenvolver um sistema que 
analisa ferimentos cutâneos de forma automatizada por meio de imagens 
fotográficas? 

A hipótese que surge diante desse questionamento, está descrita na 

subseção 1.2, a seguir. 

 

1.2. Hipótese 
A hipótese levantada aponta para um cenário em que a Visão Computacional, 

viabiliza desenvolver um sistema que seja capaz de mensurar a área do ferimento e 

 



 

reconhecer as cores presentes na lesão, possibilitando o desenvolvimento de um 

sistema que atenda a questão levantada e exposta na subseção 1.1 (Problema). 

 

1.3. Justificativa  
A medição precisa da área de feridas é um fator de extrema importância para 

obter um tratamento adequado e um acompanhamento preciso do processo 

cicatricial (Alonso et al., 2023). Segundo Dastjerdi et al. (2019) o método mais 

comumente utilizado nas práticas clínicas para a mensuração de ferida é  obter as 

dimensões lineares da ferida com uma régua.  

 Entretanto, como destacado por Barbosa (2020), os métodos manuais 

apresentam desvantagens significativas, tais como o desconforto causado ao 

paciente durante a mensuração, possibilidade de contaminação do médico e/ou 

paciente e potencial subjetividade no resultado da medição.  

A utilização da telemedicina, uso de tecnologias da informação para 

atendimento, na área da saúde, de qualidade efetiva a distância (Lisboa et al , 

2023), somada a ferramentas como Visão Computacional e Inteligência Artificial, tem 

representado avanço  na área da saúde, considerando especialmente a 

possibilidade de análise de grandes volumes de dados, como resultados 

laboratoriais, imagens de exame e mensuração de ferimentos.  

Dessa forma, usufruir de sistemas que visam não substituir o profissional de 

saúde, mas sim automatizar sob supervisão, a mensuração de ferimentos, pode 

trazer inúmeros benefícios, como: maior precisão de resultados, diminuição no risco 

de contaminação e benefícios significativos para a melhora na qualidade de vida dos 

pacientes acometidos por esse tipo de ferimento. 

É neste cenário que o presente trabalho se sustenta, buscando desenvolver um 

sistema que seja capaz de realizar a mensuração de ferimentos de forma 

automatizada, em busca de solucionar os problemas e buscar os ganhos 

supracitados. 

 

1.4. Objetivo Geral 
Dentro deste recorte o presente trabalho objetiva desenvolver um sistema 

capaz de medir a área do ferimento e identificar as cores presentes no mesmo de 

forma automatizada mediante  registros fotográficos. 

 



 

 

1.5. Objetivos Específicos 

Para que o objetivo geral seja obtido, é necessário percorrer os seguintes 

objetivos específicos: 

1.​ Implementar um algoritmo que identifica o ferimento na imagem enviada; 

2.​ Desenvolver uma função para calcular automaticamente a área do ferimento 

a partir da imagem identificada; 

3.​ Criar um módulo para identificar as diferentes cores presentes no ferimento; 

4.​ Integrar uma interface gráfica que permita a visualização dos resultados da 

análise; 

 

2. Fundamentação Teórica 

Esta seção apresenta o embasamento teórico necessário para compreender e 

sustentar a investigação sobre a utilização da visão computacional para a análise 

automática de ferimentos cutâneos. A fundamentação teórica está organizada em 

dois eixos principais que se complementam para subsidiar a resposta à questão de 

pesquisa proposta. 

O primeiro eixo aborda ferimentos cutâneos, apresentando conceitos, a 

importância do processo cicatricial e seu acompanhamento, métodos tradicionais de 

avaliação e a relação estabelecida entre as cores identificadas no ferimento. Essa 

base é fundamental para compreender os problemas enfrentados e a necessidade 

do presente trabalho. 

O segundo eixo foca em desenvolver sobre a utilização de tecnologias na área 

da saúde, especialmente a tecnologia em questão neste trabalho, a visão 

computacional, explorando definições, aplicações já aplicadas na medicina e as 

principais técnicas relevantes para a solução proposta . As informações abordadas 

neste tópico tecnológico oferecem o suporte necessário para o desenvolvimento de 

sistemas automatizados de análise. 

A relação entre esses dois campos de conhecimento fornece a base 

conceitual e técnica para a obtenção de um sistema que una precisão técnica e 

relevância das informações obtidas, colaborando com o objetivo final estabelecido. 
 



 

 

2.1. Ferimentos cutâneos 
A pele é o maior órgão do corpo humano, ela desempenha um papel de suma 

importância no corpo, participando de diferentes processos como proteção, síntese 

da vitamina D, excreção e regulação da temperatura,  assim sendo, danos a ela 

podem significar um grande risco (Tottoli et al. 2020).  

De acordo com Nagle, Stevens e Wilbraham (2023), uma ferida é definida 

como a lesão ou a interrupção da integridade celular, anatômica e/ou funcional dos 

tecidos da pele. A depender das causas e das consequências relacionadas ao 

ferimento, ele pode ser classificado como agudo ou crônico, as feridas agudas 

costumam passar por um processo de reparo organizado e apropriado, recuperando  

integridade e funcionalidade. Por outro lado, feridas crônicas não passam por um 

processo cicatricial linear, prejudicando a recuperação da integridade e 

funcionalidade do tecido   (Tottoli et al. 2020). 

 
Figura 01: Ferimento cutâneo 

                               

Fonte: Coloplast Brasil (Entendendo as skin tears ou lesões por fricção, 2021) 

 

A incidência de feridas crônicas foi estimada entre 1,51 e 2,21 por 1.000 

habitantes no mundo, segundo Zhu et al. (2022), e no Brasil, segundo Monteiro de 

Menezes et al. (2022), foi constatado que aproximadamente 3% da população é 

afetada por alguma forma de lesão cutânea e esses números tendem a aumentar 

com o envelhecimento das populações.  

 



 

Em complemento aos autores supracitados, temos Vigneron e Domingos 

(2021) que destacam como é importante observar de forma contínua os fatores 

locais, externos, e sistêmicos relacionados ao surgimento da ferida, ou que 

interfiram no processo cicatricial.  
Segundo Silva et al. (2024) a cicatrização de uma ferida consiste em uma 

cascata de eventos que culminam com a reconstituição tecidual. Normalmente o 

processo cicatricial passa por três fases: inflamatória, proliferação (ou granulação) e 

remodelamento (ou maturação). 

Em complemento Guo e Dipietro (2010) destacam que o processo de 

cicatrização é complexo e influenciado por múltiplos fatores, condições como 

diabetes, idade avançada, estado nutricional, perfusão tecidual e estado imunológico 

podem impactar significativamente a capacidade de reparo tecidual. Nesse sentido, 

uma abordagem individualizada torna-se crucial. 

A recomendação é que se faça uma avaliação semanal do ferimento, 

utilizando um instrumento padronizado, que possa garantir a confiabilidade e 

padronização dos dados, para que se possa evoluir de forma devida com processo 

de cicatrização (Santos et al, 2017). 

O acompanhamento desse processo é de suma importância para a 

adequação ou o desenvolvimento de um plano de tratamento, de acordo com Bervig 

et al. (2021), e isso apenas é possível a partir da documentação do mesmo. Esses 

dados também são determinantes para avaliar a eficácia do tratamento. 

Deve-se destacar que a qualidade do tratamento e da assistência oferecida 

durante esse período impacta diretamente na qualidade de vida dos pacientes 

(Pontes, 2023). Além disso, (Coutinho et al, 2020) ressalta que uma avaliação 

incorreta do ferimento pode acarretar complicações e atraso no processo de 

cicatrização 

Nesse contexto, a mensuração dos ferimentos cutâneos é uma etapa 

indispensável durante o tratamento. Os dados sobre o processo de cicatrização são 

fundamentais para basear as decisões do tratamento Bervig et al. (2021). Sendo 

assim, quanto mais precisa e exata é a medição, mais confiável e eficaz é o 

tratamento. 

Dentre as duas principais técnicas manuais para a mensuração de ferimentos, 

a primeira e mais simples (e padrão) é baseada em uma régua descartável, que 

 



 

calcula a área multiplicando a o maior comprimento pela maior largura, como 

destacado por (Alves et al, 2022). 

 A segunda técnica, também exposta por Alves et al (2022), é o rastreamento 

transparente, nessa técnica é utilizada uma folha de acetato quadriculada ou um 

plástico transparente colocado sob o ferimento sendo mesmo é contornado, e com 

base no contorno obtido a área é calculada. 

 
Figura 02: Mensuração com o uso de régua descartável 

                           

Fonte: Feridas Crônicas (PREVENÇÃO E MANEJO DA LESÃO POR PRESSÃO: Manejo da lesão por 

pressão, 2020) 
 

Contudo, como destacado por Barbosa (2020), os métodos manuais são 

considerados invasivos e apresentam desvantagens significativas, tais como o 

desconforto causado ao paciente durante a mensuração, e potencial subjetividade 

no resultado da medição.  

     Em complemento, Weigelt et al. (2022) destaca que as metodologias atuais de 

avaliação de feridas são predominantemente subjetivas e baseadas na experiência 

clínica, evidenciando a necessidade de ferramentas diagnósticas objetivas que 

possam transformar o tratamento de feridas numa abordagem personalizada e de 

precisão.​

         Além dos pontos já citados, é importante pontuar que a localização de algumas 

feridas, levando em conta a anatomia do corpo humano, e o perímetro irregular de 

algumas feridas, pode prejudicar o processo de mensuração manual, dada a 

 



 

dificuldade em determinar a largura e o comprimento do ferimento, bem como traçar 

seu perímetro. 

Além da mensuração, discorrida nos parágrafos anteriores, outro ponto 

extremamente relevante é a análise cromática das feridas, que representa um 

parâmetro fundamental na avaliação clínica, fornecendo indicadores visuais que 

auxiliam na determinação do estágio do processo cicatricial, presença de infecção e 

vitalidade dos tecidos 

Weigelt et al. (2022) enfatizam que os métodos tradicionais de avaliação de 

feridas carecem de precisão objetiva, sugerindo que sistemas de análise baseados 

em características visuais, como a diferenciação de cores no leito da ferida, 

poderiam proporcionar parâmetros padronizados para identificar diferentes fases de 

cicatrização, presença de inflamação, tecido desvitalizado e processos necróticos, 

contribuindo assim para diagnósticos mais acurados e protocolos de tratamento 

individualizados no contexto da medicina de precisão. 

Segundo Mandelbaum, Di Santis e Mandelbaum (2003), o sistema 

Red/Yellow/Black (RYB) proposto por Cuzzel para classificação de feridas se mostra 

um instrumento clínico valioso, pois permite categorizar as lesões de acordo com a 

sua coloração, que geralmente reflete o equilíbrio entre tecidos novos e tecidos 

necrosados, facilitando assim a tomada de decisão sobre as medidas a serem 

implementadas no tratamento.​

          Sendo assim o ‘RYB wound classification system’, Sistema de classificação de 

feridas vermelho, amarelo e preto, destacado por Santos et al (2017) como sendo 

especialmente útil dada a simplicidade em seu uso e interpretação, tem a seguinte 

descrição com base nos seus três indicativos: 

●​ Vermelho: Indica tecido de granulação saudável, caracterizado por boa 

vascularização e progressão adequada do processo de cicatrização. 

Representa a fase de regeneração tecidual ativa. 

●​ Amarelo: Sinaliza presença de exsudato e tecido desvitalizado. Requer 

limpeza cuidadosa do ferimento para remover debris celulares e prevenir 

potenciais infecções. 

●​ Preto: Evidência necrose, representando tecido morto que necessita de 

desbridamento imediato. Sua presença indica interrupção do processo 

cicatricial e risco de complicações graves. 

 



 

 
Figura 03: Representação do Sistema RYB 

 
Fonte: Manual de Padronização de Curativos da Cidade de São Paulo 

 

2.2 Tecnologia e saúde 
A integração entre a tecnologia e a medicina tem proporcionado inúmeros 

benefícios, oferecendo maior rapidez e eficácia para análises médicas e 

diagnósticos. No contexto da análise de ferimentos, essas tecnologias podem ser a 

solução para superar as limitações dos métodos manuais, proporcionando 

resultados precisos, padronizados e rastreáveis. 

Esta seção apresenta as principais ferramentas e técnicas aplicadas ao 

desenvolvimento do sistema de análise de ferimentos. Inicialmente, são abordados 

as definições e fundamentos da visão computacional, e aplicações conhecidas 

aplicadas a área da saúde, seguido pela apresentação de algumas técnicas 

específicas para análise de imagem e cores que viabilizam a implementação. 

 

2.2.1 Trabalhos Correlatos 
Na área de análise automatizada de ferimentos cutâneos por meio de 

imagens, diversos estudos têm sido desenvolvidos nas últimas décadas, utilizando 

diferentes abordagens tecnológicas para mensurar a área de feridas e identificar 

cores presentes nos tecidos. Esta seção apresenta uma revisão dos principais 

trabalhos que se correlacionam com a proposta deste estudo. 

 



 

A revisão bibliográfica foi conduzida nas bases de dados PubMed/MEDLINE, 

Scopus, e Portal de Periódicos CAPES. As buscas utilizaram combinações de 

termos relacionados a feridas, como "wound", "ulcer" e "diabetic foot ulcer", 

associados a técnicas de processamento de imagens, como "image processing", 

"computer vision" e "segmentation", empregando operadores booleanos AND para 

intersecção de termos. Para excluir trabalhos baseados em aprendizado profundo e 

inteligência artificial, foram aplicados operadores NOT combinados com termos 

como "deep learning", "machine learning", "neural network" e "CNN". Os principais 

trabalhos identificados são apresentados a seguir. 

Durante o processo de revisão bibliográfica, constatou-se uma escassez de 

trabalhos recentes fundamentados em técnicas clássicas de visão computacional 

para análise de feridas. A predominância quase absoluta de abordagens baseadas 

em inteligência artificial e aprendizado profundo a partir de 2015 evidencia uma 

lacuna no desenvolvimento e aprimoramento de métodos tradicionais de 

processamento de imagens.  

Cabe mencionar que um dos trabalhos identificados, Goyal et al. (2020), 

apresenta uma abordagem híbrida que combina técnicas clássicas com deep 

learning, sendo incluído nesta revisão por propor o descritor Superpixel Colour 

Descriptor (SPCD) e por ilustrar a transição metodológica observada na área, 

demonstrando tanto as contribuições das técnicas tradicionais quanto os avanços 

obtidos com métodos baseados em aprendizado profundo. 

●​ Sistema Automático de Avaliação de Úlceras do Pé Diabético 

Wang et al. (2016) desenvolveram um sistema colaborativo de avaliação de 

úlceras do pé diabético composto por um smartphone para captura de imagens e um 

laptop para processamento, comunicando-se via Wi-Fi em modo peer-to-peer. 

O sistema utiliza técnicas clássicas de visão computacional para realizar três 

funções principais: determinação da área da ferida através de um algoritmo baseado 

em mean-shift segmentation aprimorado, classificação de tecidos utilizando 

K-Means clustering no espaço de cor CIE Lab para segmentar tecidos vermelhos 

(cicatrização), amarelos (infecção/slough) e pretos (necrose) segundo o modelo 

RYB, e cálculo de um healing score (pontuação de cicatrização) de 0 a 10 que 

quantifica o status de evolução da ferida comparando visitas subsequentes com a 

imagem inicial. 
 



 

Para facilitar a captura de imagens de úlceras localizadas na planta do pé, os 

autores desenvolveram uma caixa de captura compacta e de baixo custo feita em 

acrílico branco com iluminação LED consistente. O sistema foi validado clinicamente 

com 12 pacientes ao longo de um ano na Clínica de Feridas da Universidade de 

Massachusetts, totalizando 32 imagens de úlceras.  

O algoritmo de detecção de área obteve um Matthews Correlation Coefficient 

(MCC) de 0,68, superior aos 0,45 reportados por trabalhos anteriores, enquanto a 

validação clínica do healing score através do Krippendorff's Alpha Coefficient (KAC) 

variou de 0,42 a 0,81 em comparação com as avaliações de três clínicos 

experientes. O tempo médio de processamento foi de aproximadamente 6 segundos 

em CPU Intel i5, demonstrando eficiência computacional adequada para aplicação 

clínica em tempo real e potencial para padronizar a avaliação de feridas e minimizar 

variações inter e intra-observador. 

 

●​ Monitoramento Domiciliar de Feridas com Análise de Espaço de Cor 
HSV 

Shi et al. (2019) desenvolveram um sistema de monitoramento domiciliar de 

feridas crônicas utilizando fotografia de smartphone e algoritmos de análise de 

imagem baseados em técnicas clássicas de visão computacional. 

O sistema foi projetado para permitir que pacientes capturem imagens em 

casa sem equipamentos especiais ou calibração, processando as fotografias através 

de um algoritmo que realiza três funções principais: transformação do espaço de cor 

de RGB para HSV (Hue-Saturation-Value) com deslocamento do canal Hue para 

centrar os valores vermelhos, facilitando a análise por histogramas; segmentação de 

tecidos através de limiarização (thresholding) aplicada ao canal Hue para 

classificar pixels segundo o modelo Black-Yellow-Red em tecido de granulação 

(vermelho), tecido epitelial (amarelo-vermelho) e necrose (preto); e refinamento da 

classificação por meio de operações morfológicas (erosão seguida de dilatação) 

para eliminar artefatos e pequenas áreas incorretamente classificadas. 

A abordagem foi implementada em Python utilizando a biblioteca OpenCV e 

validada através do acompanhamento de uma ferida crônica em perna de paciente 

ao longo de 90 dias, totalizando 119 imagens capturadas com um iPhone 7 Plus. O 

algoritmo demonstrou robustez em relação a variações nas condições de 

 



 

iluminação, característica atribuída ao uso do espaço HSV, onde o componente Hue 

é teoricamente minimamente afetado pela luminância geral da imagem. A análise de 

composição da ferida revelou tendências distintas das medições de área física, 

identificando duas fases de cicatrização: uma fase inicial de granulação nos 

primeiros 30 dias e uma fase subsequente de reepitelização.  

Os autores destacam que a análise de composição tecidual fornece 

informações complementares às métricas tradicionais de dimensão da ferida, sendo 

especialmente adequada para feridas grandes e não-planares onde medições físicas 

precisas são desafiadoras, e sugerem como direção futura a integração com 

tecnologias de câmeras 3D emergentes em smartphones para adicionar capacidade 

de análise volumétrica ao sistema atual de análise de composição. 

 

●​ Reconhecimento de Isquemia e Infecção em Úlceras Diabéticas por 
Métodos Híbridos 

Goyal et al. (2020) apresentaram o primeiro dataset público para 

reconhecimento de isquemia e infecção em úlceras do pé diabético (DFU), 

introduzindo 1459 imagens com ground truth estabelecido por dois especialistas 

médicos. Os autores investigaram tanto técnicas clássicas de visão computacional 

quanto deep learning para classificação binária dessas condições críticas que 

afetam o prognóstico e risco de amputação. 

Para a abordagem clássica, os autores propuseram um novo descritor 

denominado Superpixel Colour Descriptor (SPCD), especificamente desenvolvido 

para extrair características de cor relevantes para identificação visual de isquemia e 

infecção. O método inicia com sobre-segmentação da imagem utilizando a técnica 

SLIC (Simple Linear Iterative Clustering), que realiza otimização de k-means 

localizada no espaço 5D CIELAB para agrupar pixels baseado em cor e intensidade.  

Com k=200 superpixels para patches de 256×256 pixels, o valor RGB médio 

de cada superpixel é calculado e aplicado. Utilizando diferentes valores de threshold, 

o algoritmo extrai regiões de duas cores particulares de interesse: vermelho 

(indicativo de inflamação/perfusão) e preto (indicativo de necrose/gangrena), 

gerando um vetor de características com 10 dimensões que foi combinado com 

descritores clássicos de textura (LBP, HOG) e cor (RGB, CIELAB) para treinar 

classificadores tradicionais como BayesNet, Random Forest e Multilayer Perceptron. 

 



 

Os autores também introduziram uma técnica de Natural Data-Augmentation 

baseada em localização profunda de feridas usando Faster R-CNN com 

InceptionResNetV2, que identifica automaticamente a região de interesse (ROI) da 

úlcera nas imagens completas do pé. Como aproximadamente 92% das úlceras 

ocupam entre 0-20% da área total da imagem, técnicas convencionais de 

augmentation (random crop, scale, translation) apresentam risco de perder a ROI. A 

Natural Data-Augmentation aplica magnificações progressivas centradas na ferida 

detectada, seguidas de transformações adicionais (rotação, espelhamento, ruído 

gaussiano, ajustes de contraste), focando o aprendizado nas características 

salientes da região ulcerada. 

Para comparação, foram testados modelos de deep learning com transfer 

learning (Inception-V3, ResNet50, InceptionResNetV2) e um modelo Ensemble CNN 

que combina bottleneck features de múltiplas CNNs com classificador SVM. O 

dataset foi dividido em 70% treino, 10% validação e 20% teste com validação 

cruzada 5-fold. 

Os resultados demonstraram que métodos de deep learning superaram 

significativamente as abordagens clássicas em ambas as tarefas. Na classificação 

de isquemia, o Ensemble CNN alcançou 90,3% de acurácia, MCC de 0,807 e AUC 

de 0,904, enquanto os métodos clássicos obtiveram 78-80% de acurácia. Na 

classificação de infecção (tarefa mais desafiadora), o Ensemble CNN atingiu 72,7% 

de acurácia com MCC de 0,454, comparado a 60-64% dos métodos tradicionais. 

Curiosamente, mesmo com dataset mais desbalanceado, a classificação de 

isquemia apresentou desempenho superior (acurácia média de 83,3%) em relação à 

infecção (65,8%), sugerindo que indicadores visuais de isquemia (má perfusão, 

gangrena) são mais distintivos nas imagens do que os de infecção. 

Os autores reconhecem que a classificação de infecção a partir de imagens é 

particularmente desafiadora porque: (1) as imagens foram capturadas após 

debridamento, removendo indicadores importantes como exsudato purulento; (2) 

sinais visuais de inflamação podem ser sutis; (3) o gold standard diagnóstico requer 

testes sanguíneos e bacteriológicos, não apenas inspeção visual. Eles sugerem que 

ground truth baseado em testes clínicos objetivos (avaliação vascular para isquemia, 

exames de sangue para infecção) poderia melhorar significativamente a 

sensibilidade e especificidade dos algoritmos. 

 



 

Este trabalho é notável por representar a transição entre métodos clássicos e 

deep learning na análise de úlceras diabéticas, propondo técnicas clássicas 

inovadoras (SPCD, Natural Data-Augmentation) enquanto demonstra empiricamente 

a superioridade do deep learning para este problema específico. O dataset público 

disponibilizado constitui importante contribuição para pesquisas futuras na área. 

 

●​ Sistema APD Skin Monitoring para Monitoramento de Feridas 

Wu et al. (2019) desenvolveram um aplicativo móvel chamado APD Skin 

Monitoring, que utiliza técnicas de processamento de imagem baseadas na 

biblioteca OpenCV para análise automatizada de feridas cutâneas. 

O sistema permite o cálculo automático da área da ferida através de 

fotografias convencionais que incluem uma moeda como referência de escala, além 

de oferecer funcionalidades como análise colorimétrica através de histogramas, 

sobreposição de imagens para comparação visual e geração de gráficos para 

acompanhamento da evolução da cicatrização ao longo do tempo.  

Para detecção da moeda de referência, o algoritmo de detecção de círculos 

Hough da biblioteca OpenCV foi otimizado através da incorporação de 

transformação para o espaço de cor HSV (Hue-Saturation-Value), processando 

apenas os canais de Saturação e Valor para melhorar o contraste e facilitar a 

detecção, enquanto o canal Hue foi eliminado por não ser crítico para essa função. 

Os autores compararam duas abordagens para detecção de feridas: o 

algoritmo GrabCut e um método baseado em limiarização de cores. O GrabCut, 

embora capaz de realizar segmentação razoável, mostrou-se lento (tempo médio de 

23,2 segundos) e menos preciso (2/4 imagens segmentadas corretamente), além de 

exigir interação do usuário para definir um retângulo ao redor da ferida. Em 

contraste, o método de limiarização por cor, utilizando o intervalo BGR de (0, 0, 120) 

a (100, 100, 255) para separar pixels correspondentes à ferida do fundo da imagem, 

seguido de detecção de contornos, demonstrou maior eficiência com tempo médio 

de processamento de apenas 1,70 segundos e precisão de 4/4 imagens 

corretamente segmentadas. 

Optando pelo segundo método devido à sua maior eficiência e precisão na 

identificação do contorno da lesão, os autores implementaram funcionalidades 

adicionais como análise de histograma de cores para detectar mudanças 

 



 

características como presença de sangue, crostas ou pus, e sobreposição de 

imagens ao longo do tempo usando a moeda como referência para 

redimensionamento e padronização.  

O sistema foi validado através de um estudo de caso com imagens de ferida 

de um voluntário ao longo de aproximadamente três meses, demonstrando o 

potencial dessa tecnologia para empoderar pacientes no automonitoramento de 

feridas e reduzir a necessidade de visitas clínicas frequentes, disponibilizando o 

aplicativo gratuitamente nas lojas Google Play e App Store. 

 

●​ Segmentação de Feridas Crônicas por Clustering em Espaço de Cor 
Otimizado 

Yadav et al. (2013) desenvolveram uma metodologia para segmentação 

automática de áreas de feridas crônicas através de técnicas de clustering aplicadas 

em espaços de cor criteriosamente selecionados. O sistema proposto processa 

imagens capturadas por câmeras digitais convencionais através de um pipeline de 

pré-processamento que inclui correção de cor pelo método combinado de Gray 

World e Retinex, redução de ruído por filtro mediano 5×5 para eliminação de ruído 

sal causado por reflexos em exsudatos, e homogeneização de cores por difusão 

anisotrópica baseada no filtro de Perona-Malik que suaviza regiões preservando 

bordas. 

Um aspecto distintivo deste trabalho é a análise comparativa sistemática de 

quinze espaços de cor (RGB, HSI, XYZ, Lab, Luv, LCH, HSV, HSL, YUV, YIQ, CAT02 

LMS, YCbCr, JPEG-YCbCr, YDbDr e YPbPr) para identificar os canais com maior 

contraste entre a região da ferida e o tecido circundante. O critério de seleção 

baseou-se no cálculo do contraste médio absoluto entre as intensidades médias dos 

pixels da ferida e do fundo em cada canal. Os resultados demonstraram que os 

canais de crominância Db e Dr do espaço de cor YDbDr, utilizado no codec JPEG 

2000, proporcionaram contraste superior (0.242 e 0.261 respectivamente), 

aproximadamente o dobro dos valores obtidos nos espaços RGB e HSI 

tradicionalmente empregados para segmentação de feridas. 

A segmentação propriamente dita foi realizada através de dois algoritmos de 

clustering não supervisionado: K-means e Fuzzy C-means (FCM). O K-means 

particiona os dados em k clusters baseando-se na minimização da distância 

 



 

euclidiana entre pixels e centróides, atribuindo cada pixel exclusivamente a um único 

cluster. O FCM, por sua vez, implementa uma abordagem fuzzy onde cada pixel 

recebe um grau de pertinência a múltiplos clusters, sendo mais adequado para 

dados com sobreposição de características, como é o caso de feridas com 

composição tecidual heterogênea. O parâmetro de fuzziness m foi configurado como 

2 para controlar o grau de sobreposição entre clusters. 

O sistema foi validado em 77 imagens digitais de cinco tipos diferentes de 

feridas crônicas (úlceras de pressão, úlceras diabéticas, úlceras venosas, úlceras 

malignas e pioderma gangrenoso) provenientes da base de dados médica Medetec, 

utilizando segmentação manual por dermatologista como padrão-ouro. As métricas 

de avaliação incluíram acurácia de segmentação (SA), valor preditivo positivo (PPV) 

e sensibilidade. Os resultados mostraram que o algoritmo K-means obteve acurácia 

média de 74,39% no canal Dr e 73,76% no canal Db, enquanto o FCM alcançou 

72,55% no canal Dr e 75,23% no canal Db, sendo este último o melhor resultado 

geral, superando inclusive o algoritmo JSEG reportado por outros autores com 

73,1% de acurácia. A análise por tipo de ferida revelou as maiores acurácias para 

úlceras venosas (82,39% com K-means e 84,20% com FCM no canal Db), enquanto 

as menores foram observadas em úlceras malignas e pioderma gangrenoso. 

A seleção do canal Db como o mais adequado para segmentação foi 

justificada não apenas pelo contraste elevado, mas principalmente pela menor 

variabilidade de intensidades (desvio padrão de 0,108 para fundo e 0,127 para 

ferida), o que resulta em valores de PPV e sensibilidade mais equilibrados no FCM, 

indicando menor sobre-segmentação e sub-segmentação simultâneas. Os autores 

concluem que a abordagem proposta, combinando otimização de espaço de cor com 

algoritmos de clustering clássicos, oferece uma ferramenta computacional objetiva, 

confiável e de baixo custo para segmentação e medição de área de feridas, 

facilitando a avaliação precisa do processo de cicatrização e podendo ser estendida 

para outras aplicações similares como segmentação de tecidos em queimaduras ou 

tumores de pele. 

 

●​ Avaliação Automatizada de Área de Feridas Baseada em Imagens com 
K-Means Clustering e Código QR de Referência 

 



 

Li et al. (2025) desenvolveram um sistema automatizado para avaliação 

objetiva de área de feridas em ambiente ambulatorial, utilizando técnicas clássicas 

de visão computacional combinadas com o código QR de identificação do paciente 

como referência espacial.  

O método proposto aborda o desafio clínico da variabilidade nas medições de 

feridas causada por diferentes profissionais de saúde, momentos de avaliação e 

distâncias de captura fotográfica, que comprometem a precisão e reprodutibilidade 

das medições tradicionais realizadas com filme transparente Opsite Flexigrid. 

O sistema opera em duas etapas principais: detecção do código QR para 

estabelecimento de escala e segmentação da ferida por clustering. Para detecção 

do QR code, a imagem capturada por smartphone é convertida para escala de cinza 

e submetida a transformação binária por inversão com limiarização automática pelo 

método de Otsu, que seleciona o threshold ótimo automaticamente para criar uma 

imagem binária onde cada pixel recebe valor 1 (branco) ou 0 (preto) conforme sua 

intensidade.  

Em seguida, aplicam-se operações morfológicas de dilatação seguida de 

erosão, que constituem uma operação de fechamento para preencher pequenos 

gaps, eliminar ruído e tornar as bordas do QR code mais distintas. Objetos 

conectados às bordas da imagem são removidos para isolar o QR code, e um filtro 

de área retém apenas objetos dentro de um intervalo de tamanho específico, 

permitindo identificar e calcular a área em pixels do código QR através da contagem 

de pixels brancos. 

Para segmentação da ferida, a imagem é convertida do espaço RGB para o 

espaço de cor L*A*B*, que separa informações de luminância (brilho) e crominância 

(cor), facilitando a segmentação precisa. O algoritmo K-means clustering é então 

aplicado no espaço L*A*B* para agrupar pixels da imagem em clusters distintos 

baseados em similaridade de cor, identificando o cluster correspondente à região da 

ferida e gerando uma máscara binária.  

Esta máscara é refinada através de operações morfológicas de abertura para 

remover pequenos objetos espúrios e preenchimento de buracos, resultando em 

uma representação binária limpa da ferida. A função bwboundaries do MATLAB é 

utilizada para traçar os pontos de contorno da região segmentada, e a área final é 

calculada contando os pixels não-pretos dentro do cluster da ferida. 

 



 

A área real da ferida em centímetros quadrados é calculada pela fórmula: 

Área real = (Área em pixels da ferida × Área real do QR code) / Área em pixels do 

QR code, eliminando a necessidade de controlar rigorosamente a distância de 

captura fotográfica, desde que o código QR e a ferida estejam visíveis na mesma 

imagem e a fotografia seja tomada perpendicularmente à superfície da ferida. 

O sistema foi validado em 40 pacientes com feridas cutâneas visíveis em 

ambiente ambulatorial, capturando três fotos de cada ferida em alturas aleatórias 

usando smartphones diversos (iPhone, Samsung, Asus). A precisão do algoritmo foi 

verificada utilizando uma moeda de 1 centavo de dólar (área real de 2.8488 cm²) 

como padrão de referência, obtendo área calculada de 2.8366 cm², representando 

uma diferença de apenas 0,4%.  

Testes estatísticos confirmaram a confiabilidade do método: testes t pareados 

entre as três capturas fotográficas aleatórias produziram valores p de 0.370, 0.179 e 

0.547, todos superiores a 0.05 e indicando ausência de diferenças significativas; 

correlações de Pearson superiores a 0.99 entre todas as combinações de fotos 

demonstraram consistência quase perfeita; e análise de variância (ANOVA) com 

F=0.0049 e p=0.9951 confirmou que as três medições podem ser consideradas 

equivalentes independentemente da altura de captura. 

Os autores destacam como principais vantagens do sistema: eliminação da 

subjetividade das medições manuais, garantia de reprodutibilidade independente do 

operador, robustez a variações na distância de captura fotográfica, utilização de 

código QR já presente no sistema de identificação de pacientes (sem necessidade 

de elementos adicionais), e adequação ao fluxo de trabalho clínico acelerado de 

ambulatórios onde não é viável garantir protocolos fotográficos rigorosos.  

O método demonstra potencial significativo para monitoramento remoto de 

feridas via telemedicina, permitindo que pacientes capturem imagens em domicílio e 

as transmitam para avaliação clínica à distância, especialmente relevante para 

feridas crônicas como úlceras diabéticas e úlceras de pressão. 

 

 

2.2.2 Visão Computacional  
A Visão Computacional é um conceito antigo. As primeiras menções a esse 

termo ocorreram por volta de 1950, e em 1982 Ballard e Brown publicaram o livro 

 



 

Computer Vision. Segundo os autores, a visão computacional é a ciência que 

permite que máquinas "enxerguem".  

Nesse contexto, segundo Neves, Neto e Gonzaga (2012), a visão 

computacional, busca integrar processamento digital de imagens e inteligência 

artificial, desenvolvendo algoritmos capazes de interpretar de forma inteligente o 

conteúdo visual de imagens. Em complemento, o “objetivo principal da visão 

computacional é fazer com que as máquinas vejam o mundo da mesma forma que 

os humanos” (Bhatt et al., 2020).  

Embora o seu objetivo principal permaneça o mesmo desde os primeiros 

trabalhos, a capacidade de interpretação evoluiu significativamente. Hoje a visão 

computacional permite uma interpretação visual mais complexa, com sistemas 

capazes de reconhecer objetos, compreender contextos e até antecipar eventos a 

partir de dados visuais, e grande parte desses avanços se deve à evolução da 

Inteligência Artificial. 

Mesmo que, como citado no parágrafo anterior, os recentes avanços da visão 

computacional estejam diretamente ligados a Inteligência Artificial, o presente 

trabalho tem em foco uma abordagem mais tradicional, baseada em técnicas 

clássicas de processamento de imagem, implementadas por meio da biblioteca 

OpenCV, sem a necessidade de utilizar modelos de IA. 

Segundo Kundu (2024), às funcionalidades mais comuns em sistemas 

implementados com essa tecnologia são: 

●​ Aquisição de Imagem: Processo de adquirir uma imagem a partir de 

sensores de câmeras. 

●​ Pré-Processamento: Processo realizado antes de obter as informações 

da imagem, visando facilitar o processamento. 

●​ Extração de Características: Obtenção de informações que compõem a 

imagem, como textura e formato. 

●​ Detecção e Segmentação: Processo realizado para destacar regiões 

importantes da imagem 

●​ Processamento de alto nível: Processo que inclui a validação dos 

dados obtidos sobre as imagens processadas. 

A figura 03 ilustra o fluxo base de um sistema voltado a visão computacional, 

algumas aplicações reais desta tecnologia incluem: controle de qualidade, inspeção 
 



 

visual de equipamentos de segurança, análise de movimentos, monitoramento de 

automóveis, e reconhecimento facial, dentre outros. 

 
Figura 03: Fluxo comum de um sistema de Visão Computacional 

 

Fonte: Introdução à Visão Computacional: Uma abordagem prática com Python e OpenCV 
 

 

2.2.3. Visão Computacional na Saúde 
Um dos maiores desafios da área médica tem sido como adquirir, processar e 

exibir dados sobre o corpo, de modo que a informação possa ser visualizada, 

interpretada e utilizada. Na maior parte dos casos o uso de imagens é a abordagem 

mais eficiente para enfrentar esse desafio (Silva , Patrocínio , Schiabel. 2019). 

Por esse motivo, segundo Sabry (2024), o processamento de imagens 

médicas é uma das áreas de aplicação mais expressivas e significativas atualmente, 

complementado por Tavares et al (2024), que salienta como essa tecnologia tem se 

consolidado como essencial.  

Barelli (2018), ressalta que sistemas de visão computacional têm sido 

utilizados para detectar anomalias em exames como: tomografias, ressonâncias, 

ultrassons, etc. Em paralelo a outro campo que vem ganhando espaço 

recentemente, de acordo com Tavares et al (2024), o monitoramento de pacientes 

em ambiente hospitalar, nesse caso o sistema é utilizado para rastrear movimentos, 

detectar quedas, e monitorar sinais vitais. 

 
 
 
 

 



 

Figura 04: Tumor cerebral detectado através de visão computacional. 

 
Fonte: Introdução à Visão Computacional: Uma abordagem prática com Python e OpenCV 

 

Existem também funcionalidades mais críticas sendo desenvolvidas com essa 

tecnologia, como as intervenções cirúrgicas assistidas onde sistemas utilizam  

algoritmos avançados para guiar instrumentos robóticos com alta precisão durante 

procedimentos (Tavares et al ,2024). 

 
2.2.4. Open Source Computer Vision 

O OpenCV (Open Source Computer Vision) (opencv.org), como destacado por 

Delai e Coelho, é "um conjunto de ferramentas de programação para 

desenvolvimento de aplicações com Visão" . A ferramenta é completamente 

open-source e distribuída gratuitamente, aberta a colaborações de qualquer 

indivíduo. 

A biblioteca apresenta uma diversidade enorme de módulos e por esse motivo 

é dividida em grupos específicos de funções. Conforme Marengoni e Stringhini 

(2009), o OpenCV está organizado em cinco grupos principais: Processamento de 

imagens; Análise estrutural; Análise de movimento e rastreamento de objetos; 

Reconhecimento de padrões; e Calibração de câmera e reconstrução 3D. 

Para o presente trabalho, o foco vai para o processamento de imagens, que 

nesse caso será o principal módulo do sistema. O OpenCV fornece ferramentas 

essenciais para manipular e preparar imagens para análises mais complexas 

(Marengoni e Stringhini,2009). Por esse motivo foi a ferramenta escolhida para a 

implementação da solução proposta. 

 

http://opencv.org


 

A grande vantagem do OpenCV é a sua capacidade de processamento de 

imagens em tempo real, além da sua modularidade, e de suas funções 

pré-codificadas, que permitem o desenvolvimento e implantação de soluções 

personalizadas de forma rápida e eficiente.  

 

2.2.5. Técnicas de Visão computacional para análise de imagens 

A análise de imagens de ferimentos cutâneos por meio da visão 

computacional requer a aplicação de técnicas específicas de processamento e 

segmentação que permitam a identificação e quantificação precisa das lesões. Este 

trabalho utiliza uma abordagem baseada em contornos ativos (Active Contour) 

precedida por etapas de pré-processamento essenciais. 

Figura 05: Imagem original de lesão por pioderma gangrenoso utilizada para demonstração do 

método de segmentação. 

                      
Fonte: Salviano et al. (2025) 

A delimitação manual da região de interesse (ROI) é uma prática comum em 

aplicações de segmentação médica, permitindo ao usuário definir a área aproximada 

da lesão e reduzir o espaço de processamento. Esta abordagem elimina ruídos 

provenientes de regiões distantes e melhora a eficiência computacional do algoritmo. 

No OpenCV, a função selectROI permite essa seleção interativa: 

 



 

import cv2 

roi = cv2.selectROI("Selecione a Área de Interesse", imagem_original,  

                    fromCenter=False, showCrosshair=True) 

x, y, w, h = roi 

roi_imagem = imagem_original[y:y+h, x:x+w] 

 
 
 
Figura 06: Região de interesse (ROI) delimitada manualmente sobre a lesão. 

                                  
Fonte: Adaptado de Salviano et al. (2025 

O pré-processamento constitui etapa fundamental para melhorar a qualidade 

da imagem antes da segmentação. Segundo Gonzalez e Woods (2018), essa fase 

visa reduzir ruídos e realçar características importantes da imagem. A conversão 

para escala de cinza transforma a imagem colorida em uma representação 

monocromática através da função cvtColor do OpenCV, simplificando o 

processamento ao reduzir a dimensionalidade dos dados de três canais (BGR) para 

um único canal de intensidade: 

imagem_cinza = cv2.cvtColor(roi_imagem, cv2.COLOR_BGR2GRAY) 

 

 
 
 

 



 

Figura 07: Imagem convertida para escala de cinza. 

                                        
Fonte: Adaptado de Salviano et al. (2025) 

A suavização Gaussiana aplica um filtro de convolução que reduz ruídos de 

alta frequência enquanto preserva as bordas principais. No OpenCV, a função 

GaussianBlur com kernel 5x5 realiza esta operação, preparando a imagem para a 

segmentação subsequente: 

imagem_suavizada = cv2.GaussianBlur(imagem_cinza, (5, 5), 0) 

 
Figura 08: Imagem após aplicação do filtro Gaussiano (kernel 5x5). 

                                
Fonte: Adaptado de Salviano et al. (2025 

Os contornos ativos, também conhecidos como Snakes, são curvas 

deformáveis que se ajustam aos contornos de objetos em imagens sob a influência 

 



 

de forças internas e externas (Kass et al., 1988). Este método, implementado na 

biblioteca scikit-image através da função active_contour, baseia-se na minimização 

de uma função de energia que combina características da imagem com restrições de 

suavidade do contorno.  

Para a aplicação do Active Contour, é necessário definir um contorno inicial 

próximo ao objeto de interesse. Neste trabalho, utiliza-se uma elipse parametrizada 

com base nas dimensões da ROI selecionada, posicionada no centro da região e 

dimensionada para cobrir aproximadamente 80% da área: 

import numpy as np 

center_x = w // 2 

center_y = h // 2 

raio_x = (w / 2) * 0.8 

raio_y = (h / 2) * 0.8 

s = np.linspace(0, 2 * np.pi, 400) 

r = center_y + raio_y * np.sin(s) 

c = center_x + raio_x * np.cos(s) 

init = np.array([r, c]).T 

 

Figura 09: Contorno inicial (elipse) para o algoritmo Active Contour. 

                                  
Fonte: Adaptado de Salviano et al. (2025 

 



 

Antes da aplicação do Snake, a imagem passa por um filtro Gaussiano 

adicional através da função gaussian da biblioteca scikit-image, que otimiza a 

convergência do algoritmo ao suavizar gradientes de intensidade. As forças internas 

do Active Contour são controladas pelos parâmetros alpha (elasticidade) e beta 

(rigidez), que regulam a suavidade e continuidade da curva. As forças externas são 

derivadas do gradiente de intensidade da imagem, atraindo os pontos do contorno 

em direção às bordas detectadas. O parâmetro gamma controla a taxa de 

convergência do algoritmo: 

 

from skimage.filters import gaussian 

from skimage.segmentation import active_contour 

img_gaussian = gaussian(imagem_cinza, 3, preserve_range=False) 

snake = active_contour(img_gaussian,  

                       init,  

                       alpha=0.015,  # Elasticidade 

                       beta=10,      # Rigidez 

                       gamma=0.001)  # Taxa de convergência 

 

Figura 10: Contorno final após convergência do Active Contour. 

                                    
Fonte: Adaptado de Salviano et al. (2025 
 



 

Após a convergência do Snake, o contorno resultante é convertido em uma 

máscara binária através da função fillPoly do OpenCV, que preenche a região 

delimitada pelo contorno com pixels brancos (valor 255) sobre um fundo preto (valor 

0): 

# Conversão do Snake para formato OpenCV 

snake_contour = snake.astype(np.int32) 

snake_contour = snake_contour[:, [1, 0]]  # Inverter coordenadas (row,col) 
-> (x,y) 

# Criação da máscara binária 

mascara_snake = np.zeros_like(imagem_cinza) 

cv2.fillPoly(mascara_snake, [snake_contour], 255) 

 

 

Figura 11: Máscara binária da região segmentada. 

                          
Fonte: Adaptado de Salviano et al. (2025 

 



 

Esta máscara é então aplicada à imagem original da ROI através de uma operação 

bitwise AND, isolando completamente o ferimento do restante da imagem: 

imagem_segmentada = cv2.bitwise_and(roi_imagem, roi_imagem, 

mask=mascara_snake) 

 
Figura 12: Ferimento isolado após aplicação da máscara. 

                          
Fonte: Adaptado de Salviano et al. (2025 

Com a segmentação concluída, são calculadas métricas quantitativas através 

das funções contourArea e arcLength do OpenCV, incluindo área em pixels 

quadrados, perímetro, circularidade (relação entre área e perímetro) e solidez (razão 

entre a área do contorno e sua envoltória convexa): 

 

# Cálculo de métricas 

area = cv2.contourArea(snake_contour) 

perimetro = cv2.arcLength(snake_contour, True) 

 



 

x_c, y_c, w_c, h_c = cv2.boundingRect(snake_contour) 

 

# Circularidade (1.0 = círculo perfeito) 

circularidade = (4 * np.pi * area) / (perimetro ** 2) if perimetro > 0 else 
0 

 

# Solidez (convexidade) 

hull = cv2.convexHull(snake_contour) 

area_convexa = cv2.contourArea(hull) 

solidez = area / area_convexa if area_convexa > 0 else 0 

 

Estas medidas fornecem informações objetivas para acompanhamento clínico 

da evolução da lesão. 

Figura 13: Visualização final com overlay do contorno detectado. 

                          
Fonte: Adaptado de Salviano et al. (2025) 

A abordagem baseada em Active Contour apresenta vantagens significativas 

em relação a métodos tradicionais de segmentação por limiarização ou detecção de 
 



 

bordas, pois se adapta a contornos irregulares, é robusta a variações de iluminação 

e não depende de limiares fixos ou detecção prévia de características específicas da 

imagem (Xu e Prince, 1998). 

 



 

2.2.6. Técnicas de Visão Computacional para Análise de Cores 

A análise cromática constitui uma etapa fundamental na caracterização 

de ferimentos, permitindo identificar, quantificar e interpretar as cores 

presentes na região lesionada. Essas informações são relevantes para 

avaliação do estágio de cicatrização, detecção de sinais de infecção e 

monitoramento da evolução do tratamento. Nesse contexto, o sistema 

Red/Yellow/Black (RYB) proposto por Cuzzel para classificação de feridas se 

mostra um instrumento clínico valioso, pois permite categorizar as lesões de 

acordo com a sua coloração, que geralmente reflete o equilíbrio entre tecidos 

novos e tecidos necrosados (MANDELBAUM; DI SANTIS; MANDELBAUM, 

2003). As técnicas de visão computacional aplicadas à análise de cores 

envolvem conversão entre espaços de cores, segmentação cromática e 

algoritmos de clustering para identificação de cores dominantes. 

Antes de iniciar a análise cromática, é necessário isolar a região de 

interesse e remover elementos que possam interferir nos resultados, como 

fundos escuros provenientes de etapas anteriores de segmentação. A 

remoção de pixels indesejados pode ser realizada através de threshold , onde 

pixels com intensidade abaixo de um limiar são identificados e substituídos. O 

código abaixo exemplifica essa operação: 

 



 

gray = cv2.cvtColor(imagem, cv2.COLOR_BGR2GRAY) 

 

_, mask = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) 

 

mask_inv = cv2.bitwise_not(mask) 

 

img_sem_fundo = imagem.copy() 

img_sem_fundo[mask_inv == 255] = [255, 255, 255] 

 

Essa abordagem garante que apenas os pixels pertencentes ao 

ferimento sejam considerados nas análises subsequentes. A Figura 14 ilustra 

o resultado da remoção de fundo. 

 
Figura 14: Remoção do fundo da imagem 

(a) Ferimento com fundo escuro (b) Ferimento após remoção do fundo 

       
Fonte: Adaptado de Salviano et al. (2025) 

 
 



 

O OpenCV suporta múltiplos espaços de cores, cada um com características 

específicas que facilitam diferentes tipos de análise. Os espaços mais importantes 

para análise cromática de ferimentos são o HSV (Hue, Saturation, Value) e o Lab 

(Lightness, a, b). O espaço HSV é intuitivo para segmentação por cor, por que 

separa a informação cromática (matiz) da iluminação da imagem, enquanto o Lab foi 

projetado para aproximar a percepção visual humana de cores. 

 

A conversão entre espaços é realizada através da função cv2.cvtColor(), 

e os canais individuais podem ser separados com cv2.split(): 

 

hsv = cv2.cvtColor(imagem, cv2.COLOR_BGR2HSV) 

h, s, v = cv2.split(hsv) 

 

lab = cv2.cvtColor(imagem, cv2.COLOR_BGR2LAB) 

l, a, b = cv2.split(lab) 

Os canais H (matiz) e S (saturação) do espaço HSV permitem identificar 

características como áreas de maior pigmentação e regiões saturadas. O 

canal V (valor/brilho) auxilia na detecção de variações de luminosidade que 

podem sugerir presença de exsudato. No espaço Lab, o canal L representa a 

luminância, enquanto os canais A (eixo verde-vermelho) e B (eixo 

azul-amarelo) capturam informações cromáticas independentes da 

iluminação. A Figura 15  apresenta exemplos dos seis canais extraídos. 

Figura 15: Canais de cores extraídos 

(a) H (b) S 

 



 

  

(c) V (d) L 

  

(e) A (f) B 

 



 

  

Fonte: Adaptado de Salviano et al. (2025) 

 

 

A identificação de cores dominantes em uma imagem pode ser realizada 

através do algoritmo de clustering K-Means, que agrupa pixels similares em clusters 

baseado em suas características cromáticas. O algoritmo particiona o conjunto de 

pixels em K grupos, onde cada grupo é representado por seu centroide (cor média). 

Para aplicar o K-Means, a imagem deve ser preparada convertendo-a em um 

vetor bidimensional onde cada linha representa um pixel com seus três valores RGB:​

 

from sklearn.cluster import KMeans 
 
pixels = imagem.reshape(imagem.shape[0] * imagem.shape[1], 3) 
 
kmeans = KMeans(n_clusters=5, random_state=42, n_init=10) 
labels = kmeans.fit_predict(pixels) 
 
cores_dominantes = kmeans.cluster_centers_ 

 

Após a execução, cada pixel recebe um rótulo indicando a qual cluster 

pertence, e os centros dos clusters representam as cores dominantes. A contagem 

de pixels em cada cluster permite calcular a distribuição percentual de cada cor na 

 



 

região analisada. É importante filtrar cores indesejadas, como branco residual de 

remoções de fundo: 

 

from collections import Counter 
 
contagem = Counter(labels) 
 
cores_filtradas = [] 
for cor in cores_dominantes: 
    if not all(componente >= 250 for componente in cor): 
        cores_filtradas.append(cor) 
 

 

A distribuição de cores pode ser visualizada através de diferentes 

representações gráficas. Uma paleta de cores pode ser criada desenhando 

retângulos coloridos com os valores dos clusters identificados: 

 

 
def rgb_to_hex(rgb): 
    return "#{:02x}{:02x}{:02x}".format(int(rgb[0]), int(rgb[1]), 
int(rgb[2])) 
 
altura_barra = 80 
paleta = np.ones((len(cores) * altura_barra, 600, 3), dtype=np.uint8) * 255 
 
for i, (cor, percentual) in enumerate(zip(cores, percentuais)): 
    y = i * altura_barra 
    bgr = (int(cor[2]), int(cor[1]), int(cor[0]))  # RGB para BGR 
    cv2.rectangle(paleta, (0, y), (420, y + altura_barra), bgr, -1) 
     
    texto = f"{rgb_to_hex(cor)}: {percentual:.1f}%" 
    cv2.putText(paleta, texto, (10, y + 45), cv2.FONT_HERSHEY_SIMPLEX,  
                0.7, (255, 255, 255), 2) 
 

 

Alternativamente, gráficos de pizza podem ser gerados utilizando bibliotecas 

como Matplotlib, possibilitando uma visualização intuitiva dos percentuais de cada 

cor: 

 

import matplotlib.pyplot as plt 
 
plt.figure(figsize=(10, 8)) 
cores_hex = [rgb_to_hex(cor) for cor in cores_dominantes] 
plt.pie(percentuais, labels=cores_hex, colors=cores_hex, autopct='%1.1f%%') 
plt.title('Distribuição de Cores') 
plt.savefig('grafico_cores.png') 
 

 



 

 

A Figura 16 ilustra exemplos de paletas de cores e gráficos de distribuição. 

 
Figura 16: Visualização da distribuição cromática 

(a) Paleta de cores dominantes (b) Gráfico de distribuição percentual 

 

          
Fonte: Elaborado pelo autor 

Para visualizar a distribuição espacial das cores identificadas, pode-se 

reconstruir a imagem substituindo cada pixel pela cor do centro do cluster ao qual 

pertence, gerando uma versão visual da quantificação das cores identificadas: 

 

imagem_quantizada = cores_dominantes[labels] 
imagem_quantizada = imagem_quantizada.reshape(imagem.shape) 
imagem_quantizada = imagem_quantizada.astype(np.uint8) 

 

Esse mapa de cores permite identificar visualmente regiões homogêneas e 

localizar áreas com características cromáticas específicas, como bordas 

avermelhadas indicando inflamação ou regiões amareladas sugerindo presença de 

tecido necrótico. A Figura 17  compara a imagem original com o mapa de cores 

resultante. 

 
Figura 17: Visualização da quantificação de cores 

(a)  Imagem original (b) Mapa de distribuição espacial das cores 
dominantes 

 



 

  
Fonte: Adaptado de Salviano et al. (2025) 
 

As técnicas apresentadas possibilitam uma análise cromática completa e 

quantitativa de ferimentos, fornecendo dados objetivos que podem ser utilizados 

para monitoramento longitudinal, comparação entre diferentes casos e alimentação 

de algoritmos de aprendizado de máquina para classificação automática do estágio 

de cicatrização. 
 

3. Metodologia  

Este trabalho adota uma abordagem de desenvolvimento ágil e iterativo, 

fundamentada na aplicação de dois ciclos PDCA (Plan-Do-Check-Act) para 

garantir a qualidade e eficácia da solução proposta. Dentro da fase de 

execução de cada ciclo foi utilizado o PDSII (Processo Iterativo e Incremental 

de Desenvolvimento de Software). 

 

 



 

3.1 PDCA 
O PDCA é uma filosofia organizacional aplicada à cultura de melhoria 

contínua, representando uma intersecção entre o método científico e ações 

específicas de resolução de problemas. O ciclo foi criado na década de 30 por 

Walter A. Shewhart, mas foi consagrado 20 anos depois por William Edwards 

Deming, por esse motivo a metodologia também pode ser chamada de Ciclo de 

Shewhart ou Ciclo de Deming (NGUYEN et al., 2020). 

O principal objetivo desse método é ter maior controle dos processos para 

elevar a qualidade dos mesmos de forma contínua, ele segue quatro etapas bem 

definidas para a sua implementação: Plan, Do, Check e Act, as iniciais de cada 

etapa formam o nome do ciclo. 
 
 
 
Figura 18: Ilustração do Ciclo PDCA 

 
Fonte: Ciclo PDCA: 4 passos para melhorar processos 

 

A etapa Plan (Planejar) consiste no planejamento das atividades e definição 

de metas, a etapa Do (Executar) representa a implementação das tarefas conforme 

o planejamento, a etapa Check (Verificar) é caracterizada pelo monitoramento e 
 



 

avaliação dos resultados, e a etapa Act (Agir) consiste na implementação de ações 

corretivas para os problemas identificados (Oliveira et al,  2022). 

 

3.2 PDSII 
O desenvolvimento iterativo e incremental é uma abordagem consolidada na 

engenharia de software que combina ciclos de refinamento sucessivos (iterativo) 

com entregas parciais e funcionais (incremental). Segundo Sommerville (2011), o 

modelo incremental reduz custos técnicos de mudanças, facilita o gerenciamento de 

riscos e permite entregas mais eficazes ao dividir o sistema em módulos funcionais 

menores. Pressman e Maxim (2016) complementam destacando que essa 

metodologia permite que o software evolua através de versões progressivamente 

mais completas, possibilitando ajustes contínuos baseados em testes. 

 
Figura 19: Ilustração do PDSII 

       

Fonte: Engenharia de software. Sommerville, Ian. 2011 
 

Esta abordagem mostrou-se particularmente adequada para o presente 

trabalho, considerando que o desenvolvimento do Bio-CV exigiu inúmeros testes 

com diferentes algoritmos e funções da biblioteca OpenCV. Foi necessário testar 

múltiplas técnicas de detecção de bordas, segmentação e análise cromática para 

identificar quais se encaixariam melhor ao problema de análise de ferimentos 

cutâneos. O desenvolvimento iterativo permitiu avaliar cada solução implementada, 

descartar abordagens ineficazes e evoluir continuamente os algoritmos. 

 



 

A aplicação prática do desenvolvimento iterativo e incremental ocorreu 

especificamente durante a fase DO (Executar) de ambos os ciclos PDCA. Em cada 

iteração, um módulo funcional era implementado, testado individualmente e refinado 

antes de avançar para o próximo .  

 
3.2 Primeiro Ciclo PDCA - Desenvolvimento Dos Algoritmos 

O Quadro 01 apresenta a distribuição das atividades desenvolvidas no 

primeiro ciclo PDCA, focado em desenvolver os algoritmos base do Bio-CV, a 

aplicação da metodologia foi essencial para um desenvolvimento controlado e um 

resultado de qualidade 

 
Quadro 01: Distribuição das atividades do Primeiro Ciclo PDCA - Algoritmos  

Etapa Atividades Realizadas 

Plan (planejar) • Definir requisitos funcionais dos 
algoritmos de processamento 
• Especificar tecnologias (Python, OpenCV) 
• Projetar arquitetura dos módulos 
(detecção, área, cores) 
• Definir dataset de imagens para testes 

Do (Fazer) • Implementar algoritmo de enquadramento 
e detecção de bordas  
• Desenvolver módulo de cálculo de área 
por contornos 
• Criar sistema de análise cromática 
baseado no RYB 
• Implementar sistema de calibração com 
quadrado de referência 

Check (Verificar) • Testar algoritmos individualmente com 
dataset de imagens 
• Medir precisão na detecção de bordas 
(sobreposição mínima 80%) 
• Avaliar acurácia no cálculo de área (erro 
percentual) 
• Analisar consistência da classificação de 
cores RYB 
• Validar sistema de calibração com 
quadrado de referência 

Act (Agir) • Ajustar parâmetros do algoritmo de 
detecção de bordas 
• Otimizar algoritmo de classificação 
cromática 
• Documentar versão estável dos algoritmos 

Fonte: Elaborado pelo autor 

 



 

 

3.2.1 PLAN (Planejar) 
A primeira etapa do ciclo consiste em definir as metas e processos 

necessários para alcançar o resultado esperado, sendo imprescindível no 

desenvolvimento de software, pois estabelece o escopo, os requisitos e as 

tecnologias a serem utilizadas. No contexto da solução proposta, essa fase 

concentrou-se especialmente na definição dos requisitos funcionais do sistema, na 

investigação e seleção das tecnologias adequadas, no planejamento da arquitetura 

dos módulos e na obtenção das imagens que seriam utilizadas durante os testes. 

Para identificar os requisitos necessários para o sistema, foi necessário 

estudar o processo manual de mensuração e análise de ferimentos para identificar 

quais funções deveriam ser implementadas, bem como a resposta a ser obtida 

desses métodos. Sendo assim, as principais funcionalidades mapeadas foram: obter 

a área do ferimento analisado, obter as cores do ferimento, cadastrar pacientes e 

associar a análise da ferida ao paciente ao qual ela pertence. 

A seleção das tecnologias foi alinhada a definição dos requisitos, a escolha do 

python se deu pela facilidade da linguagem em operar o processamento de imagens 

junto a biblioteca OpenCV que tem uma extensa gama de funções lógicas já 

implementadas para análise de imagem com foco em obtenção de contornos e 

detecção de cores. 

Com as tecnologias definidas, foi possível verificar os algoritmos disponíveis e 

elaborar a estrutura dos principais módulos do sistema, bem como mapear quais 

funções poderiam ser utilizadas na detecção de bordas e contornos, bem como a 

análise cromática para classificar usando o sistema RYB. 

Para viabilizar os testes e validação do sistema, foi necessário definir o 

dataset de imagens que seria utilizado durante o desenvolvimento. As imagens de 

ferimentos foram obtidas através dos dados públicos da Escola de Enfermagem de 

Ribeirão Preto da Universidade de São Paulo1 (CALIRI, 2020) e do dataset 

disponibilizado pela University of Wisconsin–Milwaukee e pela clínica Advancing the 

Zenith of Healthcare (AZH) Wound and Vascular Center2, descrito em Wang et al. 

(2020). 

 

2 https://github.com/uwm-bigdata/wound-segmentation/tree/master/data/wound_dataset 

1 http://eerp.usp.br/feridascronicas/serie_fotografia.html 

 

https://github.com/uwm-bigdata/wound-segmentation/tree/master/data/wound_dataset
http://eerp.usp.br/feridascronicas/serie_fotografia.html


 

3.2.2 DO (Fazer) 
A segunda fase consiste na execução prática do que foi  estabelecido durante 

o planejamento. Esta fase visa implementar os processos, algoritmos e 

funcionalidades definidos na etapa anterior.  

No desenvolvimento de software, a etapa DO é caracterizada pela 

codificação, buscando implementar com as tecnologias definidas, os requisitos 

estabelecidos . Para o sistema Bio-CV, esta fase concentrou-se na implementação 

dos algoritmos de processamento de imagem, desenvolvimento da interface gráfica 

e integração de todos os componentes em um sistema funcional. 

A aplicação prática do desenvolvimento iterativo e incremental ocorreu em 

cada iteração, cada módulo funcional foi implementado, testado individualmente e 

refinado antes de avançar para o próximo componente. Por exemplo, o algoritmo de 

detecção de bordas foi desenvolvido em várias iterações, testando diferentes 

parâmetros do detector Canny até obter resultados precisos. Somente após validar 

esse incremento, passou-se ao desenvolvimento do módulo de cálculo de área. 

Essa estratégia garantiu que cada parte do sistema fosse validada 

progressivamente, reduzindo retrabalho e permitindo correções sem impactar 

módulos já estáveis. 

Para implementar o módulo de processamento de imagem, traçamos um fluxo 

lógico para o algoritmo: enquadramento → bordas → máscara → extração → cores. 

Inicialmente a ferida é enquadrada, diminuindo a área de detecção, seguindo pela 

aplicação de algoritmos para a detecção das bordas do ferimento. Com as bordas 

detectadas, criamos uma máscara binária que delimita a de forma precisa o 

ferimento, e com isso, extraímos apenas o ferimento da imagem original, podendo 

em seguida detectar as cores presentes no mesmo, bem como obter a quantidade 

de pixels do ferimento. 

Para calcular a área real do ferimento foi necessário obter uma referência de 

tamanho da realidade, utilizamos um quadrado de cor específica, e área conhecida 

para servir como padrão. Dessa forma conseguimos converter a quantidade de 

pixels do ferimento para unidades médicas reais. 

O sistema de análise cromática foi desenvolvido no espaço de cores HSV, 

permitindo classificar cada pixel segundo o sistema RYB (Red-Yellow-Black) para 

identificar diferentes estágios de cicatrização.​

 
 



 

3.2.3 CHECK (Verificar) 
A terceira etapa do método baseia-se em validar se os resultados obtidos da 

etapa anterior (DO) estão em acordo ao que foi planejado na primeira etapa (PLAN). 

Dessa forma, essa fase envolve testar o sistema desenvolvido buscando avaliar 

quais pontos necessitam de melhorias ou ajustes, estes, se observados, deverão ser 

corrigidos na etapa posterior. 

Para aplicar no desenvolvimento do Bio-CV, foi utilizado os datasets públicos 

de imagens de ferimentos da Universidade de São Paulo e do dataset da University 

of Wisconsin–Milwaukee (UWM) e AZH Wound and Vascular Center como base para 

validação do sistema, sendo utilizadas 50 imagens para as etapas de validação. 

O processo de verificação foi estruturado de forma sistemática, testando 

individualmente cada módulo do sistema (detecção de bordas, cálculo de área e 

análise cromática) antes de avaliar o desempenho conjunto da solução. Esta 

metodologia permitiu identificar cenários específicos onde ajustes seriam 

necessários para otimizar o desempenho da solução. 

A validação dos algoritmos principais do sistema envolveu testes específicos 

para cada módulo desenvolvido. Para a detecção de bordas, foi realizada uma 

comparação entre as bordas identificadas pelo algoritmo Canny e o mapeamento 

manual, considerando como correta a sobreposição de pelo menos 80% entre as 

detecções. A avaliação do cálculo de área baseou-se na comparação entre 

medições automáticas e manuais, calculando-se o erro percentual através da 

fórmula: |área_automática - área_manual| / área_manual × 100, utilizando o mesmo 

quadrado azul de calibração em ambas as análises. Para a classificação cromática 

RYB, foi verificada a consistência entre a categorização automática e manual das 

cores presentes nos ferimentos. 

 

3.2.4 ACT (Agir) 
A quarta e última etapa do ciclo PDCA, consiste em fazer as alterações 

identificadas  na etapa anterior, com objetivo de evitar que os problemas observados 

voltem a se repetir. Além de correções, essa fase também implica em aplicar 

melhorias na solução. 

No desenvolvimento do Bio-CV, a aplicação da etapa ACT baseou-se 

diretamente nos resultados obtidos durante a fase de verificação, onde foram 

identificados pontos específicos que necessitavam de ajustes para melhorar o 
 



 

sistema. As principais ações tomadas incluíram o refinamento dos parâmetros do 

algoritmo que atua na detecção de bordas, e otimizações no algoritmo de 

classificação cromática RYB para aumentar a consistência na identificação das 

cores dos ferimentos. 

As ações implementadas nesta etapa fecham o primeiro ciclo PDCA do 

desenvolvimento do Bio-CV, resultando em algoritmo base eficiente e funcional que 

atendeu aos critérios estabelecidos em consenso ao que foi planejado. 

 

3.3 Segundo Ciclo PDCA - Interface E Integração 
O Quadro 02 apresenta a distribuição das atividades desenvolvidas no 

segundo ciclo PDCA, focado em desenvolver a interface do Bio-CV e integrá-la com 

o algoritmo base desenvolvido no ciclo anterior, a divisão em dois ciclos seguindo a 

metodologia foi imprescindível para a divisão clara das fases do projeto, garantindo 

a qualidade de cada etapa. 
 

Quadro 02: Distribuição das atividades do Segundo Ciclo PDCA - Interface e Integração 

Etapa Atividades Realizadas 

Plan (planejar) •  Definir requisitos da interface gráfica 
• Especificar tecnologia para interface 
(Tkinter) 
• Projetar layout e fluxo de navegação 
• Definir critérios de usabilidade 
• Planejar integração com algoritmos 
desenvolvidos 

Do (Fazer) • Desenvolver interface gráfica com Tkinter 
• Implementar funcionalidades de upload de 
imagem 
• Criar sistema de enquadramento interativo 
• Desenvolver painéis de visualização de 
resultados 
• Integrar interface com algoritmos de 
processamento 

Check (Verificar) • Testar funcionamento da interface gráfica 
• Validar integração entre interface e 
algoritmos 
• Testar comportamento em situações de 
erro 
• Avaliar clareza na apresentação dos 
resultados 

Act (Agir) • Melhorar apresentação dos resultados 

 



 

• Otimizar descritivos das operações e telas 
• Corrigir problemas de integração 
identificados 
• Documentar versão final do sistema 
completo 

Fonte: Elaborado pelo autor 

 
3.3.1 PLAN (Planejar) 

O planejamento do segundo ciclo concentrou-se em definir os requisitos e 

especificações para desenvolver uma interface gráfica funcional e integrar todos os 

componentes em um sistema unificado. Com os algoritmos de processamento já 

validados no primeiro ciclo, esta etapa focou em projetar como os usuários finais 

interagiriam com a solução, estabelecendo critérios claros de usabilidade e definindo 

a arquitetura de integração entre interface e algoritmos. 

Para definir os requisitos da interface gráfica, foi necessário considerar o perfil 

dos usuários finais - profissionais de saúde que necessitam de uma ferramenta 

intuitiva e de fácil operação.  

A especificação da tecnologia Tkinter se deu por sua simplicidade de 

implementação, compatibilidade nativa com Python e capacidade de criar interfaces 

funcionais sem complexidade desnecessária. O fluxo de navegação foi projetado de 

forma linear e intuitiva: selecionar paciente → upload da imagem → enquadramento 

do ferimento → processamento automático → visualização dos resultados, 

garantindo que cada etapa fosse clara e eficiente. 

O planejamento da integração definiu como a interface se relacionaria com  os 

algoritmos, estabelecendo um fluxo de dados eficiente onde a imagem carregada 

pelo usuário seria processada pelos algoritmos e os resultados apresentados de 

forma organizada e compreensível. 

 
3.3.2 DO (Fazer) 

A implementação da interface seguiu o planejamento estabelecido na seção 

anterior, a abordagem adotada priorizou a criação dos componentes visuais antes da 

integração com os algoritmos já validados, permitindo testes isolados de cada 

funcionalidade antes da implementação completa do sistema. 

Assim como no primeiro ciclo, o desenvolvimento iterativo e incremental foi 

aplicado durante esta fase. Cada componente da interface foi construído em 

 



 

iterações sucessivas: inicialmente desenvolveu-se a interface base do o sistema, 

com o login, cadastro, registro de pacientes e ferimentos, em seguida iniciou-se o  

upload de imagens, que passou por várias iterações até garantir validação 

adequada. Em seguida, o enquadramento interativo foi implementado e refinado 

através de testes com diferentes tipos de seleção. Somente após validar cada 

incremento individualmente, procedeu-se à integração com os algoritmos do primeiro 

ciclo, garantindo estabilidade progressiva do sistema completo. 

A implementação da interface gráfica utilizou os recursos do Tkinter para criar 

os painéis conforme estrutura projetada. O sistema de upload foi desenvolvido 

através de diálogos de seleção que permitiam carregar imagens nos formatos JPEG 

e PNG, com validação automática do tipo de arquivo.  

O enquadramento interativo foi implementado permitindo ao usuário 

selecionar a região do ferimento através de cliques, criando um retângulo que 

delimita a área a ser processada.Os painéis de visualização de resultados foram 

desenvolvidos para apresentar simultaneamente a análise sobre a mensuração e 

cores.  

A integração com os algoritmos de processamento foi implementada através 

de chamadas diretas às funções já validadas no primeiro ciclo, onde a região 

selecionada pelo usuário é enviada sequencialmente para os módulos de detecção 

de bordas, cálculo de área e análise cromática 

3.3.3 CHECK (Verificar)  
A validação do funcionamento da interface gráfica foi realizada através de 

testes sistemáticos de cada componente desenvolvido. Os testes incluíram 

verificação do carregamento correto de imagens, funcionamento adequado dos 

botões de controle e responsividade do sistema de enquadramento interativo.  

A integração entre interface e algoritmos foi validada através da execução 

completa do fluxo de processamento, confirmando que os dados eram transmitidos 

corretamente entre os módulos e que os resultados eram apresentados 

adequadamente. 

A avaliação da clareza na apresentação dos resultados foi realizada 

analisando a disposição visual das informações de área calculada, classificação 

cromática RYB e visualização das bordas detectadas. Os testes confirmaram que os 

resultados eram exibidos de forma organizada e compreensível, permitindo aos 

 



 

usuários interpretar facilmente as informações geradas pelo sistema de análise 

automatizada. 

3.3.4 ACT (Agir)  

Com base nos resultados dos testes de validação, foram implementadas 

melhorias na apresentação dos resultados para tornar as informações mais claras e 

organizadas visualmente. Os descritivos das operações e telas foram otimizados, 

incluindo instruções mais diretas para o usuário e melhor identificação dos 

elementos da interface. Essas alterações tiveram como objetivo reduzir possíveis 

dúvidas durante o uso do sistema e tornar a experiência mais intuitiva  

Os problemas de integração identificados durante os testes foram corrigidos, 

garantindo que a comunicação entre interface e algoritmos ocorresse de forma 

eficiente e sem falhas. Foram ajustados aspectos relacionados ao tempo de 

resposta do sistema e ao tratamento de exceções em situações de erro, resultando 

em maior estabilidade operacional 

A documentação da versão final do sistema completo foi elaborada incluindo 

especificações técnicas, instruções de uso e registro das funcionalidades 

implementadas. As ações de correção implementadas nesta etapa finalizaram o 

segundo ciclo PDCA, resultando em um sistema Bio-CV integrado e funcional. 

 

4. Solução 

O Bio-CV é um sistema desktop desenvolvido em Python que integra técnicas de 

visão computacional para análise automatizada de ferimentos cutâneos, por meio de 

imagens fotográficas. A solução foi estruturada em dois módulos independentes, 

mas conectados entre si: o módulo da interface, responsável pela interação do 

usuário com o sistema, e o módulo de processamento de imagem, sendo esse o 

core da aplicação, responsável pela análise. 

 

 

4.1 Requisitos do Sistema 

4.1.1 Requisitos funcionais 

 



 

Os requisitos funcionais definem as funcionalidades que o sistema deve 

oferecer para atender às necessidades dos usuários e garantir o adequado 

gerenciamento de pacientes e ferimentos. A seguir, são apresentados os principais 

requisitos funcionais do sistema: 

●​ O sistema deve ser capaz de criar, atualizar e consultar um usuário. 

●​ O sistema deve ser capaz de criar, atualizar e consultar um paciente. 

●​ O sistema deve ser capaz de criar e excluir um registro de ferimento. 

●​ O sistema deve ser capaz de analisar as imagens dos ferimentos 

associando-as a um determinado paciente. 

●​ O sistema deve ser capaz de associar novas mensurações a um ferimento já 

existente. 

●​ O sistema deve ser capaz de armazenar os dados obtidos no processo de 

análise das imagens dos ferimentos. 

4.1.2 Requisitos não funcionais 

Os requisitos não funcionais estão relacionados às necessidades técnicas para o 

funcionamento da solução. São critérios de qualidade e experiência do usuário (UX) 

que você define e tem que avaliar se foram atendidos ou não. 

●​ O sistema deve ser desenvolvido utilizando a linguagem de programação 

Python. 

●​ O sistema deve utilizar o sistema de gerenciamento de banco de dados 

MySQL para armazenamento dos dados. 

●​ O sistema deve utilizar a biblioteca OpenCV para processamento e análise de 

imagens. 

●​ O sistema deve utilizar a biblioteca Scikit-learn para implementação do 

algoritmo K-Means na análise cromática. 

●​ O sistema deve utilizar a biblioteca Tkinter para desenvolvimento da interface 

gráfica. 

●​ O sistema deve ser compatível com o sistema operacional Windows. 

●​ O sistema deve garantir a confiabilidade dos dados dos pacientes e da 

anamnese armazenados. 

 



 

●​ O sistema deve priorizar a usabilidade, permitindo que as interações sejam 

realizadas com a menor interferência possível da habilidade técnica do 

usuário. 

 

4.2 Arquitetura do Sistema 

O sistema BIO-CV adota uma arquitetura de aplicação desktop integrada, 

desenvolvida para proporcionar uma solução completa e autossuficiente para 

análise e acompanhamento de ferimentos cutâneos. A estrutura do sistema é 

composta por três camadas principais: camada de apresentação (interface gráfica), 

camada de processamento (análise de imagens e lógica de negócio) e camada de 

persistência (banco de dados MySQL). Esta organização permite a separação de 

responsabilidades, facilitando a manutenção e evolução do sistema. 

4.2.1 Organização dos Módulos 

O sistema é estruturado em um módulo desktop único que integra todas as 

funcionalidades necessárias. Este módulo é subdividido em componentes 

especializados: 

●​ Módulo de Autenticação: Responsável pelo gerenciamento de usuários, 

realizando login, logout e controle de acesso às funcionalidades do sistema. 

●​ Módulo de Gerenciamento de Pacientes: Gerencia o cadastro, atualização 

e consulta de informações dos pacientes, incluindo dados pessoais e histórico 

clínico. 

●​ Módulo de Análise de Imagens: Componente central do sistema, 

responsável pelo processamento digital das imagens de ferimentos utilizando 

técnicas de visão computacional. Realiza operações de segmentação, 

mensuração de área e perímetro, e análise cromática. 

●​ Módulo de Visualização: Apresenta os resultados das análises permitindo o 

acompanhamento da evolução do processo cicatricial ao longo do tempo. 

●​ Módulo de Persistência: Gerencia todas as operações de comunicação com 

o banco de dados MySQL, incluindo armazenamento e recuperação de dados 

de usuários, pacientes, ferimentos e mensurações. 

 



 

4.2.2 Fluxo de Dados 

O fluxo de dados no sistema BIO-CV segue uma sequência lógica que 

garante a integridade e rastreabilidade das informações: 

1.​ Entrada de Dados: O usuário autenticado acessa o sistema através da 

interface gráfica e seleciona ou cadastra um paciente. Em seguida, submete 

uma imagem do ferimento a ser analisada. 

2.​ Processamento: A imagem é encaminhada ao módulo de análise, onde são 

aplicados algoritmos de visão computacional para segmentação do ferimento, 

cálculo de área e perímetro, e extração de características cromáticas. Os 

resultados são processados e formatados para apresentação. 

3.​ Armazenamento: Os dados obtidos na análise (área, perímetro, cores 

predominantes, data da mensuração) são associados ao registro do ferimento 

correspondente e armazenados no banco de dados MySQL, mantendo o 

histórico completo de evolução. 

4.​ Visualização: Os resultados da análise são apresentados ao usuário através 

da interface, permitindo comparações entre diferentes mensurações e 

avaliação da evolução do processo cicatricial. 

5.​ Consulta e Acompanhamento: O sistema permite consultar o histórico 

completo de mensurações de um ferimento, facilitando a tomada de decisões 

clínicas baseadas na evolução documentada ao longo do tratamento. 

4.3 Módulo de Processamento de Imagem 

O módulo de processamento de imagem constitui o componente central do 

sistema BIO-CV, responsável pela análise automatizada de ferimentos cutâneos 

através de técnicas de visão computacional. Este módulo é subdividido em três 

componentes principais que trabalham de forma integrada. 

 

4.3.1 Algoritmo de Detecção de Bordas 

A detecção precisa das bordas do ferimento é realizada através da 

implementação do algoritmo Active Contour (Snake), uma técnica avançada de 

 



 

segmentação que permite a identificação de contornos irregulares com alta precisão. 

O processo de detecção segue as seguintes etapas: 

Pré-processamento da imagem: 

●​ Conversão da imagem para escala de cinza, reduzindo a complexidade 

computacional e facilitando o processamento subsequente. 

●​ Aplicação de suavização Gaussiana para redução de ruído, preparando a 

imagem para a detecção de bordas. 

●​ Aplicação do operador Sobel para detecção de gradientes de intensidade nas 

direções horizontal e vertical, destacando as bordas presentes na imagem. 

Inicialização do Active Contour: 

●​ Definição de um contorno inicial em forma de elipse, posicionado no centro da 

região de interesse (ROI) selecionada pelo usuário. 

●​ Os parâmetros da elipse inicial são calculados com base nas dimensões da 

ROI, garantindo uma aproximação adequada do ferimento. 

Segmentação com Snake Algorithm: 

●​ O algoritmo Active Contour é aplicado utilizando os parâmetros otimizados: 

alpha (0.015) para controle da elasticidade do contorno, beta (10) para 

controle da rigidez, e gamma (0.001) para taxa de convergência. 

●​ O contorno evolui iterativamente, ajustando-se às bordas reais do ferimento 

detectadas pelos gradientes de intensidade. 

●​ O resultado é um contorno preciso que delimita exatamente a área do 

ferimento, mesmo em casos de formas irregulares. 

Criação da máscara de segmentação: 

●​ A partir do contorno final obtido pelo Snake, é gerada uma máscara binária 

que isola completamente o ferimento do restante da imagem. 

●​ Esta máscara é utilizada para extrair apenas a região do ferimento, permitindo 

análises subsequentes focadas exclusivamente na área afetada. 

4.3.2 Cálculo de Área 

 



 

O cálculo preciso da área do ferimento é fundamental para o 

acompanhamento da evolução do processo cicatricial. O sistema implementa um 

método robusto que fornece medições tanto em pixels quanto em unidades reais 

(centímetros quadrados): 

Calibração através de adesivo de referência: 

●​ O sistema detecta automaticamente um adesivo azul de dimensões 

conhecidas (1cm²) presente na imagem, como demonstrado na figura 19. 

Figura 19: Detecção do adesivo de referência pelo BIO-CV 

                  

Fonte: Adaptado de Salviano et al. (2025) 

●​ A detecção é realizada através de segmentação no espaço de cores HSV, 

isolando especificamente a faixa cromática correspondente ao azul do 

adesivo. 

●​ A área em pixels do adesivo é calculada, estabelecendo um fator de 

conversão entre pixels² e cm². 

Cálculos de área: 

●​ Área em pixels: Calculada diretamente a partir do contorno obtido pelo Active 

Contour, utilizando a função de cálculo de área de contorno do OpenCV. 

 



 

●​ Área real: Convertida de pixels para centímetros quadrados aplicando o fator 

de conversão obtido na calibração com o adesivo de referência. 

●​ Perímetro: Calculado tanto em pixels quanto em centímetros, fornecendo 

informação adicional sobre o formato e extensão do ferimento. 

Métricas complementares: 

●​ Circularidade: Calculada pela fórmula (4π × área) / (perímetro²), fornecendo 

um índice que varia de 0 a 1, onde 1 indica um círculo perfeito. Esta métrica 

auxilia na caracterização da regularidade do ferimento. 

●​ Solidez: Razão entre a área do ferimento e a área do seu envoltório convexo, 

indicando o quão "preenchida" é a forma do ferimento. 

●​ Dimensões do bounding box: Largura e altura do menor retângulo que 

envolve completamente o ferimento, úteis para estimativas rápidas de 

tamanho. 

4.3.3 Análise Cromática 

A análise cromática fornece informações essenciais sobre o estado do 

ferimento, uma vez que diferentes cores estão associadas a diferentes estágios do 

processo cicatricial e possíveis complicações. O sistema implementa um pipeline 

completo de análise de cores: 

Conversão de espaços de cores: 

●​ Espaço HSV (Hue, Saturation, Value): Separa a informação de cor (matiz) 

da intensidade luminosa, facilitando a identificação de características 

cromáticas independentemente da iluminação. Os canais H, S e V são 

extraídos e analisados individualmente. 

●​ Espaço Lab: Representa cores de forma perceptualmente uniforme, com o 

canal L representando luminância, e os canais A e B representando as 

componentes verde-vermelho e azul-amarelo, respectivamente. Este espaço 

é especialmente útil para análises clínicas de cor. 

Clustering de cores com K-Means: 

 



 

●​ Aplicação do algoritmo K-Means para identificar as cores dominantes 

presentes no ferimento. 

●​ O algoritmo agrupa pixels com cores similares em clusters (padrão: 5 

clusters), identificando automaticamente as tonalidades predominantes. 

●​ Remoção automática de pixels correspondentes ao fundo branco, garantindo 

que apenas as cores do ferimento sejam analisadas. 

Quantificação e visualização: 

●​ Cálculo de percentuais: Para cada cor identificada, é calculado o percentual 

de área que ela representa no ferimento total. 

●​ Códigos hexadecimais: Cada cor dominante é representada em formato 

hexadecimal RGB, facilitando a documentação e comunicação dos 

resultados. 

●​ Paleta de cores: Geração de uma visualização gráfica mostrando as cores 

detectadas com seus respectivos percentuais. 

●​ Gráfico de distribuição: Criação de um gráfico de pizza ilustrando a 

proporção de cada cor no ferimento. 

●​ Mapa de cores: Geração de uma imagem segmentada mostrando 

espacialmente onde cada cor predominante aparece no ferimento. 

4.4 Interface Gráfica 
A interface gráfica do sistema BIO-CV foi desenvolvida utilizando a biblioteca 

Tkinter. O design da interface prioriza a claridade na apresentação das informações 

e a facilidade de navegação, evitando complexidades e facilitando o entendimento 

dos dados exibidos. 

Anexadas abaixo (Figura 20, Figura 21, e Figura 22) estão as três principais 

telas do sistema proposto, o design da interface do sistema na íntegra pode ser 

encontrado no Figma3: 
Figura 20: Tela de cadastro de ferimento 

3 https://www.figma.com/design/i3Cn4Mt2NOwnxf4xOEcinO/BIO-CV?node-id=0-1&t=9SMonBfYbTUe8ppf-1 
 

https://www.figma.com/design/i3Cn4Mt2NOwnxf4xOEcinO/BIO-CV?node-id=0-1&t=9SMonBfYbTUe8ppf-1


 

 
Fonte: Autores 

Figura 21: Tela de envio de imagens 

 
Fonte: Autores 

 
Figura 22: Tela análise de resultados 

 



 

 
Fonte: Autores 

4.5 Integração e Funcionamento 

A integração entre os módulos do sistema BIO-CV ocorre de forma 

coordenada e automatizada, garantindo a fluidez do processo de análise e a 

consistência dos resultados. O sistema foi arquitetado para que cada módulo 

desempenhe sua função específica de maneira independente, mas integrada 

através de interfaces bem definidas e simples que facilitam a comunicação e o 

compartilhamento de dados. 

O fluxo operacional inicia-se com a autenticação do usuário no módulo de 

login, que valida as credenciais e estabelece a sessão de trabalho. Uma vez 

autenticado, o usuário acessa o módulo de gerenciamento de pacientes, onde pode 

selecionar um paciente existente ou cadastrar um novo registro. Esta integração 

com o banco de dados MySQL garante que todas as informações sejam persistidas 

de forma segura e organizada. 

Ao submeter uma nova imagem para análise, o sistema aciona 

automaticamente o módulo de processamento de imagens, que executa 

sequencialmente os algoritmos de detecção de bordas, cálculo de área e análise 

cromática. 

Os resultados obtidos pelo módulo de processamento são então estruturados 

e enviados ao módulo de persistência, que realiza a inserção dos dados no banco 

 



 

de dados, associando-os ao registro do paciente e ao ferimento específico, 

juntamente com o timestamp da análise. Esta integração permite que o histórico 

completo de mensurações fique disponível para consultas futuras e análises 

comparativas. 

Finalmente, o módulo de visualização recupera os dados armazenados e os 

apresenta de forma organizada e de fácil entendimento na interface gráfica, 

utilizando componentes visuais como tabelas, gráficos e imagens processadas. Esta 

apresentação integrada permite que o usuário tenha uma visão completa e objetiva 

do estado atual do ferimento e de sua evolução ao longo do tratamento. 

A arquitetura integrada do sistema garante que todo o fluxo, iniciando da 

captura da imagem até a exibição dos dados obtidos pela análise, ocorra de forma 

fluida e transparente, minimizando a necessidade de intervenção manual. 
 
 
 
 
 
 
 
 
Figura 23: Fluxograma do funcionamento do BIO-CV 

 



 

 
Fonte: Autores 

 



 

5. Resultados e discussões 

5.1 Considerações Iniciais sobre a Validação 

O presente trabalho propôs-se a investigar a viabilidade do 

desenvolvimento de um sistema capaz de analisar ferimentos cutâneos de 

forma automatizada mediante registros fotográficos. Para responder à 

questão de pesquisa levantada: "É possível desenvolver um sistema que 

analisa ferimentos cutâneos de forma automatizada por meio de imagens 

fotográficas?", foi desenvolvido o Bio-CV, um sistema desktop que integra 

técnicas de visão computacional para mensuração de área e identificação de 

cores em ferimentos. 

A validação realizada nesta etapa da pesquisa concentrou-se em 

demonstrar a viabilidade técnica e funcional da solução proposta. Para isso, 

foram conduzidos testes com 50 imagens do datasets públicos previamente 

citados, avaliando a capacidade do sistema em executar as funções para as 

quais foi projetado: segmentar ferimentos em imagens fotográficas, calcular 

áreas relativas através de calibração com adesivo de referência, e quantificar 

a distribuição cromática segundo padrões clinicamente relevantes. 

É importante destacar que esta primeira versão do Bio-CV foi validada 

através de análise visual qualitativa, com foco na funcionalidade dos 

algoritmos implementados e na consistência dos resultados gerados. A 

abordagem adotada consistiu em verificar se o sistema é capaz de produzir 

segmentações visualmente coerentes, medições reprodutíveis e análises 

cromáticas que correspondam à aparência visual dos ferimentos processados. 

Dessa forma, os resultados apresentados nas seções seguintes 

concentram-se em demonstrar que: 

1.​ O sistema é funcionalmente operacional, executando todas as 

etapas propostas de forma automatizada; 

2.​ Os algoritmos implementados são capazes de processar imagens 

reais de ferimentos com diferentes características; 

 



 

3.​ Os resultados gerados são visualmente coerentes e internamente 

consistentes, apresentando potencial para aplicação clínica após validação 

quantitativa; 

4.​ A abordagem baseada em visão computacional é tecnicamente 

viável para a análise automatizada de ferimentos cutâneos. 

A próxima seção apresenta a validação funcional de cada algoritmo de 

processamento de imagem do sistema, seguida pela análise de casos 

específicos que ilustram o comportamento do sistema Bio-CV em diferentes 

cenários clínicos. 

5.2 Validação Funcional dos Algoritmos de Processamento de imagem  
O Módulo de Análise de Imagens, descrito na seção 4.3, constitui o núcleo do 

sistema Bio-CV e implementa três algoritmos principais que operam de forma 

integrada: (1) detecção de bordas através do algoritmo Active Contour, (2) cálculo de 

área e métricas por meio de calibração com adesivo de referência, e (3) análise 

cromática utilizando clustering K-Means para identificação de cores dominantes. 

Esta seção apresenta a validação funcional de cada um desses algoritmos, 

demonstrando sua capacidade operacional e discutindo os resultados obtidos 

durante os testes realizados com os datasets públicos utilizados para o 

desenvolvimento do sistemas, já citados anteriormente neste documento, foram 

utilizadas 50 imagens para a validação. 

5.2.1 Algoritmo de Detecção de Bordas com Active Contour 
O algoritmo de detecção de bordas, implementado através do método Active 

Contour (Snake), constitui a primeira etapa do processamento e é fundamental para 

todo o sistema, pois a precisão da segmentação impacta diretamente todos os 

passos posteriores. O algoritmo foi testado com as imagens dos datasets de teste, 

contemplando ferimentos com diferentes características morfológicas: bordas bem 

definidas, contornos irregulares, presença de exsudato e variações de tonalidade. 

A figura 24 apresenta três casos do processo de detecção de borda com 

ferimentos com diferentes características. 

 

 

 
 



 

Figura 24: Resultados da detecção por Active Contour em diferentes tipos de ferimentos 

(a) Caso A 

                    

(b) Caso B 

                 

(c) Caso C 

               

 
(d) Caso D 

 



 

               

(e) Caso E 

              

Fonte: Autores 

O Caso A (Figura 24a) apresenta um ferimento localizado na sola do pé, 

caracterizado por bordas relativamente bem definidas e contraste adequado entre a 

lesão e a pele circundante. Observa-se que o ferimento possui formato arredondado 

com poucas irregularidades. O algoritmo Active Contour detectou satisfatoriamente o 

contorno final (linha vermelha) adaptando-se adequadamente aos limites do 

ferimento. A segmentação resultante demonstrou boa correspondência visual com 

os limites perceptíveis da lesão, delimitando a extensão do ferimento de forma 

satisfatória. Nota-se que o contorno inicial em elipse (linha verde) estava próximo às 

bordas reais, facilitando a convergência do algoritmo. 

 



 

O Caso B (Figura 24b) apresenta maior complexidade devido à morfologia 

irregular do ferimento, que possui formato alongado com múltiplas  irregularidades e 

variações significativas de largura ao longo do seu comprimento. O ferimento, 

localizado em região de membro inferior, exibe bordas serrilhadas e presença de 

tecido com tonalidade heterogênea, incluindo áreas mais escuras que sugerem 

necrose ou tecido desvitalizado. Apesar da complexidade morfológica, o contorno 

evoluiu de forma satisfatória, ajustando-se às diversas irregularidades da lesão. 

O Caso C (Figura 24c) representa uma situação intermediári, com um 

ferimento apresentando formato ovalado com leve assimetria. A lesão possui bordas 

parcialmente definidas, com algumas regiões apresentando transição mais gradual 

entre o tecido lesionado e a pele perilesional. Observa-se também a presença de 

tonalidades variadas dentro do ferimento, incluindo áreas avermelhadas e regiões 

com coloração amarelada nas bordas, possivelmente indicando exsudato. O 

contorno final (linha vermelha) acompanhou adequadamente as bordas do 

ferimento, embora nas regiões de transição mais gradual a delimitação exata seja 

naturalmente mais desafiadora. O algoritmo conseguiu capturar satisfatoriamente a 

forma geral da lesão, incluindo as pequenas irregularidades presentes no contorno. 

O Caso D (Figura 24d) apresenta um ferimento de formato alongado 

localizado em membro inferior, com características de lesão linear. A lesão exibe 

bordas bem definidas ao longo de sua extensão, com coloração avermelhada 

intensa e presença de tecido de granulação, exceto na extremidade superior onde 

se observa textura e coloração diferentes, com aspecto mais claro que o resto do 

ferimento. O contorno inicial em formato elíptico (linha verde) foi posicionado 

acompanhando a orientação linear do ferimento. O algoritmo Active Contour evoluiu 

satisfatoriamente nas regiões de coloração homogênea, com o contorno final (linha 

vermelha) ajustando-se adequadamente às bordas laterais da lesão ao longo da 

maior parte de sua extensão. Entretanto, a extremidade superior do ferimento, que 

apresenta características visuais distintas do restante da lesão, não foi 

completamente capturada pela segmentação.  

O Caso E (Figura 24e) apresenta um ferimento com formato bem definido e 

bordas predominantemente regulares. O contorno inicial (linha verde) foi posicionado 

abrangendo a região central da lesão. O algoritmo Active Contour evoluiu 

satisfatoriamente, com o contorno final (linha vermelha) acompanhando as bordas 

da lesão ao longo da maior parte de sua extensão. Entretanto, observa-se que na 
 



 

região superior do ferimento existe uma reentrância que não foi capturada pela 

segmentação, com o contorno passando de forma reta sobre essa concavidade ao 

invés de acompanhar a entrada existente. A segmentação resultante delimitou de 

forma adequada a maior parte do ferimento, demonstrando boa correspondência 

visual com os limites da lesão, embora essa reentrância específica represente uma 

limitação pontual na detecção do contorno completo. 

Com base nos testes realizados, o algoritmo Active Contour demonstrou 

capacidade de processar adequadamente ferimentos com diferentes características 

morfológicas. O desempenho foi particularmente satisfatório em casos como o Caso 

A, onde bordas bem definidas e contraste adequado facilitaram a convergência do 

algoritmo.  

Em situações de maior complexidade, como ferimentos alongados com 

múltiplas irregularidades (Caso B e Caso D), o algoritmo manteve capacidade de 

adaptação, ajustando-se às variações de forma ao longo da lesão. Casos 

intermediários, com bordas parcialmente definidas e variações cromáticas (Caso C), 

foram processados satisfatoriamente, embora apresentem maior desafio em regiões 

de transição gradual.  

Um aspecto importante observado foi a robustez do algoritmo em relação a 

contornos não-convencionais. Diferentemente de métodos baseados em formas 

geométricas pré definidas, o Active Contour demonstrou capacidade de adaptar-se a 

morfologias complexas, incluindo lesões com reentrâncias e variações significativas 

de largura, características frequentes em feridas.  

Os casos que apresentaram maior dificuldade de processamento 

compartilhavam características específicas:  

●​ Qualidade de imagem: Iluminação irregular, presença de sombras ou 

reflexos dificultaram a identificação de gradientes de intensidade necessários 

para guiar a convergência do contorno.  

●​ Bordas difusas: Transições graduais entre tecido lesionado e pele saudável 

representaram o maior desafio, uma vez que não há gradiente bem definido 

para orientar o algoritmo, como no Caso D.  

●​ Reentrâncias profundas: Concavidades no contorno do ferimento, como a 

observada na região superior do Caso E, e na região lateral do Caso B, 

 



 

tendem a ser mais difíceis de detectar, podendo resultar em contornos mais 

retilíneos nessas áreas específicas. 

●​ Dependência do contorno inicial: A qualidade da segmentação está 

relacionada à adequação da região de interesse selecionada e ao 

posicionamento inicial do contorno. 

●​ Coloração similar: Ferimentos com tonalidade muito próxima à da pele 

circundante apresentaram menor contraste, dificultando a detecção 

automática de bordas.  

Apesar dessas limitações, o algoritmo demonstrou-se funcionalmente 

adequado para a proposta do sistema, sendo capaz de segmentar automaticamente 

ferimentos com resultados visualmente coerentes em diferentes cenários clínicos. 

5.2.2 Algoritmo de Cálculo de área 

O algoritmo de cálculo de área é responsável por converter a segmentação 

obtida em medidas quantitativas clinicamente relevantes. O sistema implementa 

uma abordagem baseada em calibração através de adesivo de referência, 

permitindo a conversão de medidas em pixels para unidades reais (centímetros 

quadrados), possibilitando assim a obtenção de valores mensuráveis que podem ser 

utilizados para acompanhamento longitudinal da evolução do ferimento.  

A calibração é realizada através da detecção automática de um adesivo azul 

de dimensões conhecidas (1 cm²) posicionado próximo ao ferimento no momento da 

captura fotográfica. Este processo é fundamental para estabelecer a 

correspondência entre pixels da imagem e unidades de medida reais. A Figura 25 

ilustra o processo de detecção do adesivo de referência. 
 
 
 
 
 
 
 
 
 
 
 

 



 

Figura 25: Detecção do adesivo de referência 

 
Fonte: Autores 

 

O processo de detecção utiliza segmentação no espaço de cores HSV (Hue, 

Saturation, Value), isolando especificamente a faixa cromática correspondente ao 

azul do adesivo. Os parâmetros de segmentação utilizados foram: Matriz entre 100° 

e 130°, Saturação entre 50 e 255, e Valor entre 50 e 255. Esta faixa foi determinada 

empiricamente para capturar o azul característico do adesivo enquanto exclui outros 

elementos azulados que possam estar presentes na cena. 

Após a segmentação, operações morfológicas de fechamento e abertura são 

aplicadas para eliminar ruídos e refinar a detecção. O maior contorno identificado na 

máscara resultante é considerado como o adesivo de referência, e sua área em 

pixels é calculada automaticamente. Uma vez detectado o adesivo, é calculada sua 

área em pixels, estabelece-se o fator de conversão dividindo a área em pixels pela 

área real conhecida (1 cm²). Este fator é então utilizado para converter todas as 

medidas subsequentes de pixels para centímetros quadrados (área) ou centímetros 

lineares (perímetro, dimensões). 

Uma vez estabelecido o fator de conversão através do adesivo de referência, 

o algoritmo calcula automaticamente um conjunto de métricas para caracterizar 

quantitativamente o ferimento. A Figura 26 apresenta exemplos visuais da aplicação 

 



 

das métricas calculadas nos mesmos casos utilizados como exemplo no tópico 

anterior. 
 

Figura 26: Visualização das métricas calculadas 

(a) Caso A 

     

(b) Caso B 

              

 

(c) Caso C 

 



 

                  

 

(d) Caso D 

 

(e) Caso E 

 



 

 

Fonte: Autores 

 

A tabela 1 sumariza os valores quantitativos das métricas calculadas para os 

três casos representativos apresentados anteriormente 

 
Tabela 1: Métricas calculadas pelo algoritmo para os casos representativos 

Fonte: Autores 

 

A área calibrada representa a medida fundamental do ferimento, expressa em 

centímetros quadrados após conversão através do fator de calibração. Esta métrica 

é essencial para o acompanhamento da evolução do ferimento ao longo do tempo, 

permitindo quantificar objetivamente a redução ou expansão da lesão. Observa-se 

 

Métrica Caso A Caso B Caso C Caso D Caso E Unidade  

Área (pixels)  10419.00 12677.00 5679.50 10172.59 17499.00 px2 

Área (calibrada)   4.97 2.87 1.24 3.03 5.21 cm2 

Perímetro 
(calibrado)   

9.52 8.61 4.77 9.39 10.06 cm 

Circularidade 0.689 0.486 0.687 0.432 0.647 0-1 

Solidez 0.938 0.866 0.942 0.760 0.963 0-1 

Largura (bounding 
box) 

2.33 3.31 1.27 1.57 3.66 cm 

Altura (bounding 
box) 

3.22 1.37 1.59 3.66 2.24 cm 



 

na tabela 1 que o Caso E apresenta a maior área (5.21 cm²), seguido pelo Caso D 

(3.03 cm²), Caso A (4.97 cm²), Caso B (2.87 cm²) e Caso C (1.24 cm²), refletindo as 

diferenças visíveis de tamanho entre as lesões. 

O perímetro calibrado fornece informação complementar sobre a extensão 

das bordas do ferimento, sendo particularmente relevante para ferimentos alongados 

ou com contornos irregulares. O Caso E apresenta o maior perímetro (10.06 cm), 

seguido pelo Caso D (9.39 cm), esse, com sua morfologia alongada e linear, 

apresenta perímetro proporcionalmente maior em relação à sua área, enquanto os 

Casos A, C e E, com formas mais compactas, apresentam relação área/perímetro 

mais equilibrada. 

A circularidade, calculada pela fórmula (4π × área) / (perímetro²), fornece um 

índice que varia de 0 a 1, onde valores próximos a 1 indicam ferimentos com formato 

próximo ao circular, enquanto valores menores indicam formas mais irregulares ou 

alongadas. Observa-se que o Caso D apresenta a menor circularidade (0.432) 

devido à sua morfologia linear e alongada, semelhante ao Caso B que possui 

circularidade 0.486, enquanto os Casos A, C e E, com formas mais arredondadas, 

apresentam valores mais próximos de 1. Esta métrica pode ser útil para 

caracterização e classificação de diferentes tipos de lesões.  

A solidez, definida como a razão entre a área do ferimento e a área do seu 

envoltório convexo, indica o grau de "preenchimento" da forma. Valores próximos a 1 

representam ferimentos com contornos convexos e regulares, enquanto valores 

menores indicam presença de reentrâncias ou concavidades significativas. O Caso 

D apresenta solidez menor, seguido novamente pelo caso B, refletindo as múltiplas 

irregularidades observadas em seu contorno, enquanto os Casos A e C apresentam 

valores mais altos, indicando formas mais convexas. Esta métrica pode auxiliar na 

identificação de ferimentos com bordas serrilhadas ou áreas de retração.  

No ferimento retratado na figura 27, podemos observar a variação da 

circularidade e solidez, de acordo com as definições atribuídas a eles nos parágrafos 

anteriores. Dessa forma, sendo o ferimento em questão mais circular e de bordas 

bem definidas, durante a análise ambos os valores se aproximam mais de 1, sendo 

respectivamente 0.867 e 0.986. 

 

 

 
 



 

Figura 27: Detecção do adesivo de referência 

 
Fonte: Autores 

 

As dimensões do bounding box (menor retângulo que envolve completamente 

o ferimento) fornecem estimativas rápidas de largura e altura máximas da lesão, 

úteis para a documentação e comunicação entre profissionais de saúde.  

O algoritmo de cálculo de área demonstrou-se funcionalmente operacional, 

fornecendo medições consistentes e um conjunto abrangente de métricas 

quantitativas. A abordagem baseada em calibração por adesivo de referência 

mostrou-se prática e implementável, não requerendo equipamentos especializados 

além da câmera fotográfica.  

Os testes realizados demonstraram que o algoritmo produz valores numéricos 

consistentes quando aplicado às mesmas condições de entrada, indicando 

reprodutibilidade adequada do processamento. A automação do cálculo de todas as 

métricas após a segmentação elimina a necessidade de intervenção manual, 

tornando o processo mais eficiente e reduzindo a possibilidade de erros humanos na 

medição ou no registro dos dados.  

O conjunto de métricas fornecidas (área, perímetro, circularidade, solidez, 

dimensões) oferece caracterização multidimensional do ferimento, permitindo não 

apenas quantificar seu tamanho, mas também descrever objetivamente sua forma e 

complexidade morfológica. Estas informações podem ser utilizadas para 

acompanhamento da evolução de ferimentos, comparações entre diferentes lesões, 

 



 

documentação objetiva do processo cicatricial, e também auxiliar na classificação da 

ferida. 

É importante ressaltar que, embora o algoritmo forneça valores numéricos 

consistentes e reprodutíveis baseados na calibração com o adesivo de referência, a 

presente validação concentrou-se em demonstrar a viabilidade técnica e funcional 

da abordagem proposta.  

A acurácia absoluta dessas medidas, ou seja, o quão próximas as medições 

automatizadas estão das dimensões reais dos ferimentos, requer estudos 

comparativos controlados com métodos de referência estabelecidos e aprovação do 

conselho de ética, que poderão ser conduzidos em etapas futuras da pesquisa.  

Algumas considerações práticas foram identificadas:  

●​ Dependência do adesivo: O sistema requer a presença do adesivo de 

referência na imagem para conversão de medidas reais. Imagens sem o 

adesivo podem fornecer apenas medidas relativas em pixels.  

●​ Ângulo de captura: A precisão da calibração assume que o adesivo e o 

ferimento estão aproximadamente no mesmo plano. Capturas em ângulos 

oblíquos ou em superfícies curvas do corpo podem introduzir distorções 

perspectivas que não são corrigidas pelo método atual.  

●​ Qualidade da segmentação: A acurácia de todas as métricas depende 

fundamentalmente da qualidade da segmentação obtida na etapa anterior. 

Segmentações imprecisas resultarão em medições imprecisas.  

●​ Iluminação do adesivo: Condições de iluminação que alterem 

significativamente a aparência cromática do adesivo podem dificultar ou 

impedir sua detecção automática.  

 

Apesar dessas considerações, o algoritmo demonstrou viabilidade técnica 

para a proposta de análise automatizada de ferimentos cutâneos. A abordagem é 

compatível com práticas clínicas existentes e pode ser facilmente integrada a 

protocolos de acompanhamento de pacientes com feridas. 

 

5.2.3 Algoritmo de Análise Cromática 
O algoritmo de análise cromática é responsável por identificar e quantificar as 

cores presentes no ferimento, fornecendo informações essenciais sobre o estado da 

lesão. Diferentes cores estão associadas a diferentes estágios do processo 
 



 

cicatricial e possíveis complicações, tornando a análise cromática um componente 

fundamental para avaliação clínica objetiva de ferimentos cutâneos. 

O processamento cromático inicia-se após a segmentação do ferimento, 

utilizando a máscara binária obtida pelo algoritmo Active Contour para isolar 

exclusivamente os pixels pertencentes à lesão. O sistema implementa análise em 

múltiplos espaços de cores (HSV e Lab) para capturar diferentes aspectos da 

informação cromática, conforme descrito na seção de Fundamentação Teórica 

(seção 2.2.6). 

A identificação das cores dominantes é realizada através do algoritmo de 

clustering K-Means, que agrupa pixels com características cromáticas similares. O 

algoritmo particiona o conjunto de pixels do ferimento em K grupos (clusters), onde 

cada grupo é representado por seu centroide, correspondente à cor média daquele 

grupo. Para os testes realizados, foram utilizados K=5 clusters, valor que 

demonstrou equilíbrio adequado entre detalhamento cromático e simplicidade de 

interpretação.  

A Figura 28 apresenta os resultados da análise cromática aplicada aos três 

casos representativos, incluindo a paleta de cores identificadas, o gráfico de 

distribuição percentual e a reconstrução visual da imagem baseada nos clusters de 

cores. 

 
Figura 28: Visualização das métricas calculadas 

(a) Caso A 

        

 



 

(b) Caso B 

              

 

(c) Caso C 

                  

 

(d) Caso D 

 



 

 

(e) Caso E 

 

Fonte: Autores 

 

O Caso A apresenta distribuição cromática caracterizada por presença 

significativa de tonalidades escuras (54,1% classificadas como Black/Preto) e 

tonalidades avermelhadas (45,9% classificadas como Red/Vermelho), com ausência 

de tonalidades amareladas. A predominância de cores escuras sugere presença de 

tecido necrosado ou desvitalizado, enquanto as áreas vermelhas indicam tecido de 

granulação. A imagem reconstruída evidencia claramente a distribuição espacial 

dessas tonalidades, mostrando que as áreas mais escuras concentram-se 

predominantemente em determinadas regiões do ferimento.  

 



 

A análise pelo K-Means identificou quatro clusters principais com as seguintes 

proporções: 35,53% (#442F47), 18,59% (#7F6E5F), 17,16% (#D1AD4E), e 14,51% 

(#8F7179). Esta diversidade de tonalidades, mesmo dentro das categorias RYB, 

reflete a complexidade cromática real do ferimento. 

O Caso B apresenta distribuição cromática significativamente diferente, com 

predominância de tonalidades amareladas (53,9%) e vermelhas (46,1%), sem 

presença de áreas classificadas como pretas. Esta composição cromática sugere 

ferimento com presença importante de exsudato ou tecido fibrinoso (tonalidades 

amarelas) combinado com tecido de granulação (tonalidades vermelhas), indicando 

processo cicatricial em andamento sem presença significativa de necrose.  

O K-Means identificou quatro clusters dominantes: 29,27% (#F7DDB2), 

27,79% (#F9C289), 16,77% (#D47470), e 11,42% (#8F4D52). A imagem 

reconstruída mostra distribuição relativamente homogênea das tonalidades mais 

claras (bege e laranja) por toda a extensão do ferimento, com concentrações de 

vermelho mais intenso em regiões específicas, possivelmente correspondendo a 

áreas de maior vascularização ou tecido de granulação mais maduro. 

O Caso C apresenta predominância marcante de tonalidades vermelhas 

(95,5%), com presença mínima de amarelo (4,5%) e ausência de tonalidades pretas. 

Esta distribuição indica ferimento predominantemente composto por tecido de 

granulação saudável, sugerindo processo cicatricial ativo e favorável. A pequena 

proporção de amarelo pode corresponder a áreas com exsudato leve ou fibrina nas 

bordas, conforme observado visualmente.  

A análise pelo K-Means revelou quatro tonalidades vermelhas distintas: 

29,68% (#CF6261), 27,48% (#BD0328), 20,83% (#E47789), e 6,5% (#F2468A). A 

presença de múltiplas tonalidades de vermelho, mesmo dentro da mesma categoria 

RYB, demonstra a capacidade do algoritmo de capturar variações cromáticas sutis 

que podem ter relevância clínica. A imagem reconstruída mostra distribuição dessas 

tonalidades de forma relativamente uniforme, com leve concentração de tons mais 

claros em determinadas regiões. 

O Caso D apresenta distribuição cromática caracterizada por predominância 

de tonalidades vermelhas (90.6%) e presença moderada de amarelo (9.4%), com 

ausência de tonalidades pretas. Esta composição sugere ferimento com tecido de 

granulação predominante (áreas vermelhas) combinado com regiões de exsudato ou 

fibrina (áreas amareladas), indicando processo cicatricial em andamento.  
 



 

A análise pelo K-Means identificou três clusters principais com as seguintes 

proporções: 28.56% (#D97063), 26.77% (#E87E72), e 23.46% (#D45B53). Esta 

distribuição de tonalidades vermelhas com variações sutis de intensidade reflete a 

heterogeneidade do tecido de granulação ao longo da extensão linear do ferimento. 

A imagem reconstruída mostra distribuição relativamente uniforme das tonalidades 

avermelhadas pela maior parte da lesão, com as áreas amareladas concentrando-se 

principalmente na extremidade superior, correspondendo à região que apresentou 

características visuais distintas durante a segmentação. 

O Caso E apresenta distribuição cromática com forte predominância de 

tonalidades vermelhas (92.0%) e presença de amarelo (8.0%), sem áreas 

classificadas como pretas. Esta composição indica ferimento predominantemente 

composto por tecido de granulação, com presença de áreas amareladas 

possivelmente correspondendo a fibrina ou exsudato, conforme observado 

visualmente na análise morfológica.  

A análise pelo K-Means revelou três clusters principais: 32.39% (#C85052), 

28.85% (#D06562), e 19.48% (#DA7F77). A presença dessas tonalidades 

vermelhas distintas demonstra variações cromáticas ao longo do ferimento, com 

áreas de vermelho mais intenso alternando com tonalidades mais claras. A imagem 

reconstruída evidencia distribuição heterogênea dessas tonalidades, com 

concentrações de tons mais escuros em determinadas regiões e áreas mais claras 

em outras, refletindo a complexidade do processo cicatricial e a presença de 

diferentes tipos de tecido dentro da lesão. 

O algoritmo de análise cromática demonstrou capacidade de identificar e 

quantificar objetivamente as cores presentes nos três casos representativos, 

revelando diferenças significativas entre eles. A comparação entre os casos ilustra a 

utilidade clínica potencial da quantificação cromática: o Caso A, com 54,1% de 

tonalidades escuras, claramente difere dos Casos B e C em termos de composição 

cromática, sugerindo diferentes estágios ou características do processo de 

cicatrização.  

A categorização segundo o sistema RYB fornece interpretação clínica 

simplificada e alinhada com práticas estabelecidas. O Caso C, com 95,5% de 

vermelho, sugere prognóstico favorável com predominância de tecido de granulação 

saudável. O Caso B, com distribuição equilibrada entre vermelho e amarelo, indica 

 



 

processo cicatricial em curso com presença de exsudato. O Caso A, com presença 

significativa de preto (54,1%), sinaliza necessidade de atenção clínica devido à 

proporção de tecido necrosado ou desvitalizado.  

A quantificação automática de cores oferece vantagens significativas em 

relação à avaliação visual subjetiva: fornece valores numéricos reprodutíveis, elimina 

variabilidade do observador, e permite acompanhamento objetivo de mudanças 

cromáticas ao longo do tempo. A comparação entre os três casos demonstra como 

diferenças cromáticas objetivas podem refletir diferentes estados clínicos dos 

ferimentos. 

A imagem reconstruída, em particular, demonstrou-se ferramenta útil para 

visualização da distribuição espacial das cores identificadas. No Caso A, por 

exemplo, torna evidente a localização das áreas escuras; no Caso B, mostra a 

distribuição relativamente homogênea das tonalidades claras; e no Caso C, revela a 

uniformidade das tonalidades vermelhas por toda a extensão da lesão. Além de ser 

uma ferramenta de validação da detecção das cores em si, ao passo que reproduz a 

imagem original. 

Algumas considerações importantes foram identificadas durante a análise dos 

casos:  

●​ Dependência da iluminação: Embora o uso de espaços de cores como HSV e 

Lab suavize parcialmente os efeitos de variações de iluminação, condições 

extremas ainda podem afetar a identificação precisa.  

●​ Subjetividade na categorização RYB: A conversão de cores contínuas em 

categorias discretas envolve definição de limiares, por esse motivo pode não 

capturar toda a nuance cromática, por esse motivo são retornadas também os 

clusters identificados pelo K-Means  

●​ Validação clínica: A correspondência entre as distribuições cromáticas 

quantificadas e sua interpretação clínica requer validação por profissionais de 

saúde. 

 

Apesar dessas considerações, o algoritmo de análise cromática 

demonstrou-se funcionalmente adequado para fornecer quantificação objetiva e 

reprodutível das cores presentes em ferimentos cutâneos. A abordagem oferece 

informação complementar às métricas de área e forma, contribuindo para 

caracterização mais completa das lesões. Reiterando, a solução deve ser utilizada 
 



 

como ferramenta de auxílio ao profissional da saúde e não para diagnósticos sem 

supervisão 

 

5.3 Apresentação dos Resultados Integrados do Sistema 
As seções anteriores apresentaram a validação individual de cada algoritmo 

de processamento de imagem implementado no Bio-CV. Esta seção demonstra o 

funcionamento integrado do sistema através de um caso demonstrativo completo, 

ilustrando como todas as funcionalidades operam de forma coordenada desde a 

captura da imagem até a apresentação dos resultados finais.  

O sistema Bio-CV opera através de um pipeline sequencial automatizado, 

conforme descrito na seção 4 (Solução). Uma vez que o usuário carrega a imagem e 

seleciona a região de interesse, o processamento ocorre automaticamente, 

executando as etapas de segmentação, cálculo de métricas e análise cromática de 

forma integrada.  

A figura 29 apresenta a interface principal do sistema durante o processo de 

análise de um ferimento. 

 
Figura 29: Interface de processamento do Bio-CV 

 
Fonte: Autores 
 

 



 

Após a conclusão do processamento automático, o sistema apresenta os 

resultados de forma integrada através da interface de resultados, que consolida 

todas as análises realizadas em uma única tela. 

A figura 30 apresenta a interface completa de resultados do Bio-CV, onde 

todas as informações geradas pelos três algoritmos são apresentadas de forma 

organizada e acessível. 

 
Figura 30: Interface de resultados completos do sistema Bio-CV 

 
 

Fonte: Autores 

 

A interface de resultados está organizada em seções distintas que 

apresentam:  

●​ Visualizações gráficas (parte superior): Três componentes visuais 

apresentados lado a lado - a imagem original do ferimento isolado, o gráfico 

 



 

de distribuição cromática em formato de pizza, e a imagem reconstruída onde 

cada pixel é colorido de acordo com o cluster identificado pelo algoritmo 

K-Means. Esta apresentação visual permite compreensão imediata tanto da 

aparência real do ferimento quanto de sua composição cromática 

quantificada.  

●​ Classificação cromática: O sistema apresenta a distribuição segundo o 

sistema RYB (Red-Yellow-Black), indicando os percentuais de tecido de 

granulação (vermelho), exsudato ou tecido desvitalizado (amarelo), e necrose 

(preto). Adjacente à classificação RYB, é exibida a paleta detalhada das cores 

dominantes identificadas pelo K-Means, com seus códigos hexadecimais e 

percentuais específicos, oferecendo caracterização cromática em dois níveis 

de detalhamento.  

●​ Métricas em pixels: Apresenta as medidas brutas obtidas diretamente do 

processamento da imagem: área em pixels quadrados, perímetro em pixels, 

quantidade total de pixels do ferimento, e dimensões do bounding box (menor 

retângulo que envolve o ferimento). Estas informações são úteis para 

referência técnica e verificação do processamento.  

●​ Métricas calculadas: Exibe os índices de circularidade e solidez, ambos 

variando de 0 a 1. A circularidade indica quão próxima a forma do ferimento 

está de um círculo perfeito (valor 1 = círculo perfeito, valores menores = 

formas mais irregulares ou alongadas). A solidez indica o grau de 

"preenchimento" da forma (valor 1 = forma totalmente convexa, valores 

menores = presença de reentrâncias ou concavidades).  

●​ Dimensões reais calibradas: Apresenta as medidas clinicamente mais 

relevantes, convertidas para unidades reais através do fator de calibração 

obtido pelo adesivo de referência: área total em centímetros quadrados, 

perímetro em centímetros, e dimensões aproximadas (largura e altura) em 

centímetros. Estas são as métricas primárias para acompanhamento clínico 

da evolução do ferimento. Esta organização permite acesso rápido às 

informações mais relevantes clinicamente (área em cm², classificação RYB) 

mantendo disponíveis os detalhes técnicos para análises mais aprofundadas 

quando necessário. 

 

 



 

A partir da interface apresentada na figura 30, é possível observar 

concretamente os resultados obtidos pelo sistema Bio-CV em um caso real de 

processamento. A análise dimensional revela informações precisas sobre as 

características geométricas do ferimento processado. O sistema calculou uma área 

real de 6.15 centímetros quadrados, com perímetro de 9.63 centímetros, indicando 

um ferimento de dimensões moderadas.  

As medidas de largura e altura, 3.28 centímetros e 2.49 centímetros 

respectivamente, sugerem uma forma ligeiramente alongada no eixo horizontal. Em 

termos de resolução digital, o ferimento ocupa 25405 pixels da imagem capturada, 

distribuídos em uma área de 25139 pixels quadrados com perímetro de 616 pixels, e 

dimensões em pixels de 210 por 159. 

As métricas calculadas fornecem informações adicionais sobre a morfologia 

do ferimento. O índice de circularidade de 0.832 indica que a forma se aproxima 

razoavelmente de um círculo, embora não seja perfeitamente circular, sugerindo 

algum grau de irregularidade nas bordas.  

A solidez de 0.983 demonstra que o ferimento possui contorno relativamente 

convexo, com poucas reentrâncias ou concavidades significativas, o que pode ser 

um indicador positivo do processo de cicatrização. Estes índices morfométricos, 

combinados com as dimensões absolutas, permitem caracterização objetiva da 

geometria da lesão. 

A análise cromática automática revelou características importantes sobre a 

composição tecidual do ferimento. Segundo a classificação RYB, o sistema 

identificou 39.1% de componente vermelho, associado ao tecido de granulação 

saudável, e 60.9% de componente amarelo, relacionado à presença de exsudato ou 

tecido desvitalizado. Notavelmente, não foi detectada presença de tecido necrótico 

(componente preto), o que pode indicar um ferimento em processo ativo de 

cicatrização, sem áreas de necrose estabelecida. Esta distribuição cromática 

quantificada oferece base objetiva para avaliação do estado evolutivo da lesão. 

O algoritmo K-Means identificou cinco cores dominantes na imagem do 

ferimento, fornecendo detalhamento adicional da composição cromática. A cor mais 

prevalente, com código hexadecimal #F7DCB1 e representando 30.95% da área, 

corresponde a tonalidade bege clara. A segunda cor mais frequente, #F0C098 com 

28.17%, apresenta tom pêssego claro. As tonalidades avermelhadas aparecem em 

 



 

três intensidades distintas: #D3716D com 16.01%, #E49787 com 14.64%, e 

#BE4B51 com 10.24%, variando de vermelho rosado a vermelho mais intenso. Esta 

paleta detalhada complementa a classificação RYB simplificada, permitindo análise 

cromática em múltiplos níveis de granularidade conforme a necessidade clínica ou 

de pesquisa. 

A integração de todas essas informações em uma única interface demonstra a 

capacidade do sistema Bio-CV de realizar análise abrangente e multidimensional de 

ferimentos cutâneos. De forma que uma única análise disponibilizou todas as 

informações discorridas nos parágrafos anteriores. 

A disponibilidade simultânea de métricas simplificadas para uso clínico 

imediato e de dados técnicos detalhados para análises aprofundadas torna o 

sistema versátil o suficiente para atender diferentes necessidades, desde o 

acompanhamento de rotina em ambiente clínico até aplicações em pesquisa 

científica sobre processos de cicatrização. 

 

6. Considerações Finais 

O presente trabalho apresentou o desenvolvimento do Bio-CV, um sistema de 

visão computacional para análise automatizada de ferimentos cutâneos, integrando 

técnicas de processamento de imagem e para fornecer avaliações objetivas e 

padronizadas de lesões. A pesquisa demonstrou que é possível substituir métodos 

tradicionais de avaliação, frequentemente subjetivos e imprecisos, por uma 

abordagem tecnológica que oferece mensuração quantitativa, reprodutível e 

acessível. 

A implementação dos três algoritmos principais - segmentação por 

limiarização de cor, detecção e calibração através de marcador de referência, e 

classificação cromática pelo método K-Means - mostrou-se eficaz na extração de 

informações relevantes sobre dimensões reais, morfologia e cromática do ferimento.  

A utilização de um adesivo  como elemento de calibração revelou-se uma 

solução prática e de baixo custo, permitindo conversão precisa de medidas digitais 

para unidades reais sem necessidade de equipamentos especializados. A interface 

desktop desenvolvida garante acesso simplificado aos dados, possibilitando uso em 

diferentes contextos clínicos. 

 



 

Os resultados obtidos evidenciam que o sistema consegue realizar análises 

de ferimentos de forma rápida e intuitiva, apresentando métricas dimensionais 

calibradas em centímetros, índices como circularidade e solidez, e distribuição 

cromática segundo o sistema RYB amplamente utilizado na avaliação clínica de 

feridas. A classificação detalhada de cores dominantes pelo K-Means complementa 

a análise, oferecendo granularidade adicional quando necessária para pesquisa ou 

acompanhamento mais minucioso. 

A padronização das medições favorece a comunicação entre profissionais de 

saúde e a comparação temporal da evolução das lesões, fundamentais para tomada 

de decisões terapêuticas baseadas em evidências. Além disso, a documentação 

digital automática facilita a manutenção de registros completos e organizados, 

atendendo tanto necessidades assistenciais quanto de pesquisa científica. 

É preciso considerar que apesar dos resultados positivos, o trabalho 

apresenta limitações que devem ser consideradas. O sistema foi desenvolvido e 

testado com conjunto limitado de imagens, sendo necessária validação mais ampla 

com diferentes tipos de ferimentos, condições de iluminação e características de 

pele.  

A validação quantitativa comparativa – que envolveria a comparação 

direta entre as medições automatizadas pelo Bio-CV e mensurações reais 

obtidas por métodos padronizados em ambiente clínico controlado poderá ser 

objeto de estudos futuros. 

Juntamente a sugestão do parágrafo anterior há a expansão do banco de 

dados de imagens para validação mais robusta dos algoritmos, incluindo diferentes 

etnias, tipos de lesão e estágios de cicatrização, bem como estudos clínicos 

comparativos entre avaliações manuais e automatizadas seriam fundamentais para 

validação científica do método. 

Retomando a hipótese inicial deste trabalho, que propunha ser possível 

desenvolver um sistema de visão computacional capaz de analisar automaticamente 

ferimentos cutâneos a partir de imagens fotográficas, fornecendo medições objetivas 

de dimensões e classificação cromática de forma acessível e sem necessidade de 

equipamentos especializados, pode-se afirmar que ela foi plenamente confirmada.  

O Bio-CV comprovou, através de sua implementação funcional e dos 

resultados apresentados, que técnicas consolidadas de processamento de imagem, 

 



 

são capazes de extrair informações quantitativas precisas sobre ferimentos cutâneos 

de maneira automática e reprodutível. O sistema não pretende substituir a avaliação 

clínica do profissional de saúde, mas sim atuar como ferramenta auxiliar que 

complementa o julgamento clínico com dados objetivos e padronizados.  

Embora desafios permaneçam em termos de validação clínica ampla e 

refinamento contínuo dos algoritmos, o Bio-CV demonstra que a visão 

computacional pode efetivamente apoiar profissionais da saúde no 

acompanhamento de ferimentos cutâneos, fornecendo subsídios mensuráveis que 

auxiliam na tomada de decisões e na documentação sistematizada da evolução das 

lesões. 
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