

MINISTÉRIO DA EDUCAÇÃO​
SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA​

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA BAIANO -
CAMPUS CATU

CURSO TECNÓLOGO EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ARTHUR SALDANHA FÉLIX ULISSES

Desenvolvimento de uma Interface Web para o Monitoramento de
Variáveis Ambientais e Segurança em Protótipo de Colmeia Inteligente

CATU-BAHIA

2025

1

ARTHUR SALDANHA FÉLIX ULISSES

Desenvolvimento de uma Interface Web para o Monitoramento de

Variáveis Ambientais e Segurança em Protótipo de Colmeia Inteligente

Trabalho de Conclusão de Curso
apresentado ao curso de Análise e
Desenvolvimento de Sistemas como
requisito parcial para à obtenção do
grau de Tecnólogo em Análise e
Desenvolvimento de Sistemas pelo
Instituto Federal de Educação,
Ciência e Tecnologia Baiano campus
Catu.

Orientador(a): Prof. Dr. Gilvan
Martins Durães

CATU-BAHIA

2025

2

Ficha catalográfica elaborada pelo Bibliotecário Ricardo Santos do Carmo Reis - CRB – 5ª / 1649

​

3

Agradecimentos

A Deus, pela vida, pela força e por iluminar meus passos ao longo desta

caminhada.

Aos meus pais, em especial a minha mãe, pelo apoio incondicional aos estudos

e por acreditar no meu potencial em cada etapa.

Ao meu orientador, cuja sabedoria e conhecimento foram essenciais em

diversos momentos do curso, oferecendo direção, rigor e confiança para a

concretização deste trabalho.

Aos colegas de turma, pela convivência e colaboração que tornaram o percurso

mais leve e significativo.

Aos(às) servidores(as) desta instituição, pelo profissionalismo e dedicação que

sustentam o nosso cotidiano acadêmico.

Por fim, a mim mesmo, pela persistência e por não desistir diante dos desafios.

4

“O futuro pertence àqueles que

acreditam em seu próprio esforço.”

(Autor desconhecido)

5

Resumo

O manejo de apiários no Brasil lida com questões complexas, como a

necessidade de intervenções menos invasivas e a crescente preocupação com

a segurança patrimonial contra furtos. Neste contexto, a Apicultura de Precisão,

utilizando a Internet das Coisas (IoT), apresenta-se como uma abordagem

tecnológica viável. Este trabalho, inserido no "Projeto Melissa" do IF Baiano,

teve como objetivo geral desenvolver uma interface web funcional para um

protótipo de colmeia inteligente, capaz de receber, armazenar e exibir dados de

sensores ambientais (temperatura, umidade, peso, luminosidade, uv) e de

segurança (alertas de abertura) em tempo real. A metodologia adotada foi a

Design Science Research (DSR), focada na construção de um artefato de

software. O sistema foi desenvolvido com tecnologias de código aberto (PHP 8

e MySQL) e é composto por uma API de ingestão, que recebe dados de um

módulo ESP8266, e uma interface web responsiva com dashboards e gráficos.

Os resultados demonstraram, através de testes de API (caixa-preta) com a

ferramenta Postman, o funcionamento robusto do backend, validando o

recebimento de dados com baixa latência, a geração imediata de alertas de

segurança e o registro de falhas de autenticação. Testes funcionais

comprovaram a aderência da interface aos requisitos de controle de acesso

baseado em papéis, responsividade e exportação de dados. O trabalho conclui

entregando um artefato de software validado, de baixo custo e escalável, que

atinge todos os objetivos propostos e contribui para a pesquisa em apicultura

de precisão.

​

Palavras-chave: Apicultura de Precisão; Internet das Coisas; Monitoramento

de Colmeias

6

Abstract

Apiary management in Brazil deals with complex issues, such as the need for

less invasive interventions and growing concerns about property security

against theft. In this context, Precision Beekeeping, using the Internet of Things

(IoT), presents itself as a viable technological approach. This work, part of IF

Baiano's "Melissa Project", had as its general objective to develop a functional

web interface for a smart beehive prototype, capable of receiving, storing, and

displaying real-time data from environmental sensors (temperature, humidity,

weight, luminosity, uv) and security sensors (opening alerts). The methodology

adopted was Design Science Research (DSR), focusing on the construction of

a software artifact. The system was developed with open-source technologies

(PHP 8 and MySQL) and is composed of an ingestion API, which receives data

from an ESP8266 module, and a responsive web interface with dashboards and

graphs. The results demonstrated, through API (black-box) tests with the

Postman tool, the robust operation of the backend, validating data reception

with low latency, the immediate generation of security alerts, and the

registration of authentication failures. Functional tests confirmed the interface's

adherence to requirements for role-based access control, responsiveness, and

data export. The work concludes by delivering a validated, low-cost, and

scalable software artifact that achieves all proposed objectives and contributes

to research in precision beekeeping.

Keywords: Precision Beekeeping; Internet of Things; Beehive Monitoring.

7

Lista de Figuras

Figura 1 – Diagrama de Caso de Uso do Sistema Melissa...25
Figura 2 – Modelo Entidade-Relacionamento (DER) do Sistema Melissa.................... 27
Figura 3 – Diagrama de Componentes do Sistema Melissa... 29
Figura 4 – Diagrama de Implantação do Sistema Melissa.. 30
Figura 5 – Diagrama de Sequência do fluxo de Ingestão de Dados............................. 32
Figura 6 – Diagrama de Sequência do fluxo de Falha de Autenticação (API Key
Inválida)... 34
Figura 7 – Diagrama de Atividade do Fluxo de Ingestão de Dados.............................. 35
Figura 8 – Tela de Autenticação do Sistema Melissa..40
Figura 9 – Dashboard do Sistema Melissa (Filtros, Leituras e Alertas)........................ 41
Figura 10 – Dashboard do Sistema Melissa (Gráficos Históricos)................................ 42
Figura 11 – Tela de Gerenciamento de Usuários.. 43
Figura 12 – Tela de Gerenciamento de Colmeias... 44
Figura 13 – Tela de Gerenciamento de Dispositivos... 45
Figura 14 – Teste de API: Sucesso na Ingestão (Postman)..47
Figura 15 – Teste de Integração: Alerta de Segurança no Dashboard......................... 48
Figura 16 – Teste de API: Falha de Autenticação (Postman)..49
Figura 17 – Teste de API: Log da Falha de Autenticação (Banco de Dados)............... 49
Figura 18 – Teste Funcional: Visão do Ator "Pesquisador"... 50
Figura 19 – Teste Funcional: Responsividade da Interface em Visão Mobile............... 51
Figura 20 – Teste Funcional: Resultado da Exportação de Dados (CSV).....................52

8

Sumário

1. INTRODUÇÃO...11
1.1 CONTEXTUALIZAÇÃO... 11
1.2 PROBLEMA... 11
1.3 JUSTIFICATIVA... 12
1.4 OBJETIVO GERAL..12
1.5 OBJETIVOS ESPECÍFICOS... 12
1.6 TRABALHOS CORRELATOS... 13
2. FUNDAMENTAÇÃO TEÓRICA.. 14
2.1 FUNDAMENTOS DA APICULTURA E MELIPONICULTURA................................. 14
2.2 APICULTURA DE PRECISÃO...15
2.3 INTERNET DAS COISAS (IOT) E A APRENDIZAGEM BASEADA EM PROJETOS.
17
2.4 DESENVOLVIMENTO DE SISTEMAS WEB E BANCO DE DADOS......................18
3. METODOLOGIA..21
3.1 TECNOLOGIAS UTILIZADAS E JUSTIFICATIVA...21
3.2 LEVANTAMENTO DE REQUISITOS...22
3.2.1 Requisitos Funcionais (RF)... 23
3.2.2 Requisitos Não Funcionais (RNF)...23
3.2.3 Regras De Negócio (RB).. 24
4. PROJETO E DESENVOLVIMENTO DO SISTEMA..25
4.1 MODELAGEM E CASOS DE USO..25
4.2 MODELAGEM DO BANCO DE DADOS... 26
4.3 ARQUITETURA DA SOLUÇÃO.. 28
4.3.1 Arquitetura De Componentes..28
4.3.2 Arquitetura de Implantação... 30
4.4 MODELAGEM COMPORTAMENTAL..31
4.4.1 Interações de Ingestão de Dados..31
4.4.2 Interação em Falhas de Autenticação.. 33
4.4.3 Fluxo de Atividade..35
4.5 DETALHES DA IMPLEMENTAÇÃO.. 36
4.6 ESTRATÉGIA DE TESTES E VALIDAÇÃO.. 38
5. RESULTADOS E DISCUSSÃO...39
5.1 APRESENTAÇÃO DA INTERFACE WEB... 39
5.1.1 Autenticação e Controle de Acesso... 39
5.1.2 Painel de Controle (Dashboard)..40
5.1.3 Gerenciamento do Sistema... 42
5.1.4 Gerenciamento de Colmeias e Dispositivos..43
5.2 VALIDAÇÃO DOS TESTES E ADERÊNCIA AOS REQUISITOS........................... 46
5.2.1 Testes de API (Caixa-Preta) e Integração Ponta-a-Ponta................................46
5.2.2 Testes Funcionais da Interface... 50
5.3 DISCUSSÃO DOS RESULTADOS..53
6. CONSIDERAÇÕES FINAIS.. 56

9

Referências..57
APÊNDICE A – DOCUMENTO DE REQUISITOS DO PROTÓTIPO DE INTERFACE
WEB PARA COLMEIA INTELIGENTE.. 62

10

1. INTRODUÇÃO

1.1 CONTEXTUALIZAÇÃO

A biodiversidade e a produção agrícola dependem diretamente das

abelhas. Elas são responsáveis por algo em torno de 40% da polinização

ecossistêmica (RICKETTS et al., 2008). No Brasil, a apicultura transcende a

relevância ambiental, firmando-se também como um pilar econômico, cenário

que foi impulsionado pela chegada das abelhas africanizadas, um híbrido

adaptado ao clima tropical que hoje domina a produção nacional (SANTOS,

2015).

1.2 PROBLEMA

A sobrevivência dessas abelhas, no entanto, está sob crescente

ameaça. Questões como desmatamento, uso indiscriminado de agrotóxicos e

manejo incorreto vêm sendo associados a um declínio das populações de

abelhas, já relatados na literatura (Viana e SILVA, 2010; NOCELLI et al., 2012).

Além disso, o próprio estresse das intervenções humanas frequentes prejudica

o comportamento e a produtividade das colônias. Nesse cenário, a Apicultura

de Precisão surge como uma alternativa viável. Utilizando a Internet das Coisas

(IoT), o monitoramento remoto e contínuo passa a permitir uma gestão mais

ágil, menos invasiva e com respostas rápidas a riscos (COTA et al., 2023).

Estudos recentes confirmam: o uso de sensores para medir variações de

temperatura, umidade ou peso é eficaz para identificar anomalias em tempo

real, fundamentando uma tomada de decisão mais precisa (ZACEPINS et al.,

2015; KULYUKIN et al., 2018).

Paralelamente aos desafios biológicos e de manejo, um problema de

ordem prática tem se intensificado: a segurança dos apiários. O aumento de

relatos de furtos e vandalismo em colmeias (FONTENELE, 2022) impõe a

necessidade de integrar, de forma acessível e eficiente, mecanismos de

monitoramento ambiental e de segurança patrimonial.

11

1.3 JUSTIFICATIVA

Este trabalho se insere no contexto descrito ao propor o

desenvolvimento de uma interface web dedicada ao monitoramento e

segurança de um protótipo de colmeia inteligente. A solução é parte integrante

do projeto Melissa, desenvolvido no Instituto Federal Baiano Campus Catu. O

autor deste TCC atuou como bolsista no referido projeto, participando

ativamente do desenvolvimento do protótipo físico (o módulo de colmeia

inteligente) que serve como base para este trabalho. O protótipo físico

existente já é capaz de aferir variáveis críticas (temperatura, umidade,

luminosidade, radiação UV e peso) e emitir alertas de abertura não autorizada.

Esta pesquisa foca, portanto, em transformar essas medições brutas em um

sistema web estruturado. Esse sistema é capaz de armazenar, exibir e analisar

as informações de modo organizado, seguro e acessível. O objetivo dessa

interface é oferecer uma visualização de dados clara e integrada, útil tanto para

pesquisadores quanto para apicultores. Ela servirá, ainda, como alicerce para

futuras aplicações em campo, ajudando a fomentar o uso de tecnologias

acessíveis na apicultura de precisão.

A fundamentação desta proposta consiste integrar, de modo prático, os

dados do protótipo físico a um ambiente digital que permita acompanhamento

remoto e registro histórico. A construção da interface web viabiliza a análise

das variáveis e a gestão dos alertas de segurança sem exigir intervenção física

no apiário. Optou-se por tecnologias de ampla adoção e código aberto (PHP,

MySQL e o módulo ESP8266) para reforçar o caráter acessível e educacional

do projeto, o que facilita sua replicação ou aprimoramento em outros contextos.

1.4 OBJETIVO GERAL

O objetivo geral deste trabalho é criar uma interface web para um

protótipo de colmeia inteligente que lide com os dados dos sensores em tempo

real, desde o recebimento até o armazenamento e a exibição.

1.5 OBJETIVOS ESPECÍFICOS

a) levantar os requisitos funcionais e não funcionais da interface web

proposta;

12

b) projetar e implementar o banco de dados que armazenará as

informações ambientais e de segurança;

c) desenvolver a interface web responsiva para permitir a visualização

dos registros.

d) integrar o protótipo físico com a aplicação web, garantindo que a

comunicação entre o hardware e o software seja contínua.

O alcance desses objetivos visa consolidar um sistema funcional que

une automação, análise de dados e segurança. Espera-se, com isso, contribuir

para o avanço das pesquisas em apicultura inteligente, demonstrando o

potencial de tecnologias IoT para promover simultaneamente o bem-estar das

abelhas e a sustentabilidade no manejo dos apiários.

1.6 TRABALHOS CORRELATOS

A investigação da IoT aplicada à apicultura não é inédita, e diversos

trabalhos recentes pavimentaram esse caminho. Estudos como os de SILVA

(2017) focaram no monitoramento não invasivo; ZACEPINS et al. (2020)

desenvolveram sistemas para aferir o estado da colônia (temperatura, peso,

som); e propostas mais recentes, como as de CARDOSO et al. (2023) e

MARQUES et al. (2024), validaram o uso de protótipos de baixo custo e

arquiteturas IoT para coleta de dados ambientais. O presente trabalho se apoia

nessas fundações, mas se diferencia ao propor uma abordagem que integra,

em uma única plataforma, o monitoramento ambiental e a segurança física da

colmeia. Ao unificar a coleta automatizada de dados, os alertas de segurança

em tempo real e uma interface web dedicada, o projeto Melissa busca ampliar

as possibilidades de pesquisa e ensino, demonstrando o potencial da

tecnologia aplicada à sustentabilidade e à proteção de ecossistemas

essenciais.

13

2. FUNDAMENTAÇÃO TEÓRICA

2.1 FUNDAMENTOS DA APICULTURA E MELIPONICULTURA

A apicultura é uma prática humana antiga, notável por sua

sustentabilidade. Ela não se resume à produção de alimentos ou derivados;

tendo relevância também na manutenção da biodiversidade. No Brasil, a

atividade ganhou contornos próprios, principalmente após a introdução das

abelhas africanizadas (Apis mellifera). Esses insetos, um resultado do

cruzamento de subespécies europeias e africanas, mostraram-se incrivelmente

resistentes e adaptados ao nosso clima tropical (SILVA et al., 2021). Hoje, por

causa da sua alta produtividade e rusticidade, essas "abelhas africanizadas"

simplesmente dominam a produção nacional, viabilizando a apicultura em

quase todos os biomas.

A Embrapa Meio-Norte (2021) reforça um ponto crucial: a apicultura vai

além do seu valor econômico óbvio, sendo uma ferramenta de conservação

ambiental. Afinal, são as abelhas que fazem a maior parte do trabalho de

polinização, tanto em culturas agrícolas quanto na flora silvestre. Isso significa

que elas ajudam a regenerar ecossistemas e dão estabilidade à nossa

produção agrícola. Existe, portanto, uma interdependência clara entre a

atividade apícola e o meio ambiente. Ela se torna essencial para o equilíbrio

ecológico e a sustentabilidade no campo, sobretudo em locais com muita flora.

Nada disso funciona sem o cuidado correto. O sucesso da produção

depende totalmente de um manejo adequado das colmeias. A obra Apicultura:

criação de abelhas e produção de mel (GERONET SERVICES, 2004) é

enfática sobre a importância de boas práticas: higienizar as caixas, manter um

controle sanitário das colônias e, acima de tudo, respeitar o ciclo natural dos

insetos. São essas ações que garantem não só a qualidade do mel, mas o

bem-estar da colônia, o que por sua vez reduz perdas e evita o abandono das

caixas.

Além da apicultura tradicional, outra atividade tem ganhado espaço: a

meliponicultura. Trata-se da criação de abelhas nativas sem ferrão, como as

14

dos gêneros Melipona e Trigona. Elas produzem um volume de mel bem

menor, se comparadas às africanizadas, mas sua relevância ecológica é única.

Essas abelhas nativas conseguem polinizar espécies de plantas que as

abelhas exóticas simplesmente não visitam. Como bônus, seu mel tem um

valor comercial altíssimo, muito reconhecido por suas qualidades terapêuticas

e sensoriais.

Por esses motivos, órgãos como a Embrapa têm incentivado a

meliponicultura. Ela é vista como uma excelente alternativa de renda,

especialmente para a agricultura familiar, ao mesmo tempo em que ajuda a

conservar os ecossistemas locais. Fica claro que ambas as práticas, apicultura

e meliponicultura, são fundamentais para um modelo de desenvolvimento rural

sustentável, que une produção econômica e preservação.

2.2 APICULTURA DE PRECISÃO

Entender a base biológica e produtiva é o primeiro passo para

modernizar o setor. É exatamente nesse ponto que a tecnologia pode

contribuir. A integração de sensores, plataformas digitais e sistemas web, como

a que este trabalho propõe, aparece como uma estratégia inovadora. O

objetivo é usar essas ferramentas para promover um manejo mais inteligente e

sustentável das colmeias, melhorando a eficiência da produção e a segurança

geral dos apiários.

A apicultura de precisão é o que acontece quando o manejo

convencional encontra a tecnologia. A ideia central é usar recursos

tecnológicos para transformar a gestão das colmeias, buscando mais eficiência

e sustentabilidade. Acima de tudo, o manejo passa a ser orientado por dados.

Com isso, o apicultor ganha uma nova capacidade: ele pode entender

melhor o comportamento das abelhas. Anomalias são identificadas muito mais

cedo. No fim, as decisões se tornam mais assertivas, pois são baseadas em

informações quantitativas, não apenas na observação casual (ZACEPINS et

al., 2015).

Nesse contexto, utilizam-se tecnologias emergentes, incluindo sensores

eletrônicos, redes sem fio, sistemas embarcados e plataformas de visualização.

15

O uso desses dispositivos permite o acompanhamento detalhado constante

das variáveis internas da colmeia. Tal monitoramento possibilita identificar

anomalias precocemente, favorecendo tomadas de decisão rápidas que

assegurem a sustentabilidade e a produtividade do apiário.

No Brasil, nosso desafio é adaptar essas tecnologias. Elas precisam

funcionar em nossas condições climáticas e, o mais importante, caber na

realidade socioeconômica. A busca é por soluções de baixo custo e

manutenção simples. É exatamente nesse ponto que o uso de

microcontroladores e módulos acessíveis, como o ESP8266, se mostra um

caminho viável. COTA et al. (2023) destacam que essa abordagem funciona

bem para criar protótipos em ambientes acadêmicos e comunitários. Isso

acaba fomentando tanto a pesquisa aplicada quanto a formação de novos

profissionais para a inovação no campo. O resultado prático é a possibilidade

de monitorar muitas colmeias de longe, o que otimiza recursos e economiza

deslocamentos.

A importância de monitorar as variáveis microclimáticas de forma

contínua é um ponto-chave. Isso permite ao apicultor ajustar seu manejo às

condições do ambiente, o que reduz o estresse das colônias e previne perdas

significativas, como reforça MACHADO (2024). O autor também salienta os

ganhos em eficiência operacional e práticas mais sustentáveis. Essa ideia de

integração é levada adiante por MELO (2025), que apresentou um protótipo de

colmeia inteligente com sensores de temperatura, umidade e peso, mas que

também incluía alarmes automatizados para a segurança do apiário. Para ele,

essa combinação de hardware e software é um passo importante para

disseminar tecnologias que sejam acessíveis e replicáveis, especialmente em

ambientes de pesquisa e educação.

Assim, a apicultura de precisão é uma área de convergência entre

tecnologia e biologia. O conhecimento empírico do apicultor não é substituído;

ele é enriquecido por informações vindas de dispositivos inteligentes. Essa

união entre a coleta automatizada de dados e a análise digital acaba por

promover um novo paradigma de manejo: observação contínua, no diagnóstico

antecipado e em intervenções baseadas em evidências. É exatamente nesse

16

cenário que sistemas como o Melissa surgem, representando um avanço real

na democratização da inovação tecnológica para a apicultura sustentável no

Brasil.

2.3 INTERNET DAS COISAS (IOT) E A APRENDIZAGEM BASEADA EM

PROJETOS

A Internet das Coisas (IoT) descreve como dispositivos físicos

interagem. Eles são equipados com sensores, atuadores e conectividade.

 Desse modo, quando usam a internet, conversam entre si e com

plataformas digitais. Essa integração contínua entre o físico e o virtual é, para

muitos, uma das evoluções mais significativas do nosso tempo (ATZORI, IERA

e MORABITO, 2010)

Sistemas de sensoriamento distribuídos, que fornecem informações

precisas e contínuas sobre o ambiente, são viabilizados justamente pela IoT

(GUBBI et al., 2013). Quando redes de sensores se ligam a plataformas web, é

possível criar soluções que cobrem o ciclo todo. Captura, processamento e

visualização. O resultado final favorece tecnologias sustentáveis que ajudam

na tomada de decisão.

Essa estratégia de monitoramento ambiental via IoT tem se provado

eficiente. Ela serve para acompanhar variáveis climáticas e ecológicas de

longe. Conectar sensores a uma infraestrutura sem fio é o que permite criar

sistemas escaláveis. E esses sistemas geram informações em tempo real para

muitos contextos. O manejo de colmeias, o controle agrícola e a gestão de

recursos naturais são apenas alguns exemplos (ZANELLA et al., 2014).

Mas a IoT não é só uma ferramenta técnica; ela tem um enorme

potencial para a aprendizagem ativa. Isso é muito relevante no meio

educacional e científico. Um bom exemplo vem de MACIEL et al. (2017), que

usaram a Aprendizagem Baseada em Projetos (PBL) para desenvolver um

sistema de monitoramento ambiental. Os próprios estudantes participaram de

todo o processo. Concepção, prototipagem e implementação da solução de

coleta e visualização. A abordagem foi um sucesso. Além de desenvolver

17

competências técnicas, ampliou a compreensão prática dos alunos sobre

eletrônica, programação e conectividade.

Essa experiência (MACIEL et al., 2017) demonstra algo importante:

projetos de IoT podem ser, ao mesmo tempo, instrumentos de ensino e de

pesquisa, unindo hardware, software e metodologias inovadoras. Essa

perspectiva se alinha perfeitamente ao desenvolvimento do sistema Melissa.

Nosso projeto segue esta linha, usando sensores conectados, Wi-Fi e

armazenamento em servidor web para o acompanhamento remoto das

variáveis e alertas de segurança. Ou seja, além da sua aplicação prática, o

sistema carrega um forte componente didático e científico. Ele se alinha

perfeitamente à formação interdisciplinar que o PBL promove.

No fim das contas, a Internet das Coisas aplicada ao monitoramento

ambiental é uma tecnologia essencial. Ela serve tanto à pesquisa científica

quanto à educação tecnológica. O uso dela em sistemas como o Melissa

apenas evidencia esse potencial de integrar sustentabilidade, inovação e

formação acadêmica. É um caminho para promover o uso responsável de

tecnologias digitais no estudo e na preservação dos ecossistemas.

2.4 DESENVOLVIMENTO DE SISTEMAS WEB E BANCO DE DADOS

Hoje, o desenvolvimento de sistemas web é uma das principais áreas da

engenharia de software. O foco é criar aplicações que rodam em navegadores

e se conectam a servidores remotos. É uma abordagem que mistura princípios

clássicos de engenharia com práticas de interoperabilidade, escalabilidade e,

claro, experiência do usuário (PRESSMAN e MAXIM, 2021). Para sistemas que

exigem acesso distribuído e processamento dinâmico, como os de IoT, ela se

tornou fundamental.

Aplicações web, em sua maioria, usam a arquitetura cliente-servidor. A

lógica é uma comunicação clara: o cliente, que costuma ser o navegador, faz

uma requisição. O servidor, por sua vez, processa essa requisição e retorna um

conteúdo ou dados. A grande vantagem dessa estrutura é a modularidade. Ela

permite que as responsabilidades do sistema sejam divididas em camadas,

como a apresentação (frontend), o negócio (backend) e os dados. Essa

18

separação, como aponta SOMMERVILLE (2019), é o que facilita a

manutenção, o reuso de código e a segurança geral da informação.

Para o sistema Melissa, a camada de apresentação (frontend) foi

construída com tecnologias padrão: HTML, CSS e JavaScript. Foi utilizado o

framework leve PicoCSS e a biblioteca Chart.js, que é usada para exibir os

dados visuais em tempo real. Essa escolha foi técnica. Ela atende aos

requisitos de responsividade e acessibilidade do projeto. Isso permite que

pesquisadores e usuários acessem o painel de qualquer dispositivo, seja

computador, tablet ou smartphone.

A camada de negócio (backend) foi implementada em PHP 8. Essa

camada atua como a ponte entre o banco de dados e a interface. Usamos o

PHP 8, uma linguagem amplamente adotada em sistemas dinâmicos, por sua

flexibilidade e simplicidade. Para uma aplicação educacional e de pesquisa

como o Melissa, que exige baixo custo e alta portabilidade, foi uma escolha

adequada (ULLMAN, 2017).

Para a integração com o banco de dados, fizemos a escolha técnica de

usar a extensão PDO (PHP Data Objects). O PDO não é apenas uma forma de

conectar ao MySQL; ele atua como uma camada de abstração que fornece

uma interface única para diversos bancos. A principal vantagem dessa escolha

é a segurança: o PDO facilita e incentiva o uso de prepared statements

(consultas parametrizadas), que é a defesa mais robusta e recomendada

contra ataques de SQL Injection. Isso garante que os dados vindos da interface

ou da API não possam comprometer o banco de dados.

O núcleo de todo o sistema é o banco de dados. É ele quem guarda e

recupera as informações. Nossa escolha foi o MySQL. Ele segue o modelo

relacional clássico, proposto por CODD (1970). Nele, os dados são

organizados em tabelas ligadas por chaves. Esse modelo garante consistência,

integridade e um desempenho eficiente em consultas SQL. Não é à toa que os

bancos relacionais continuam sendo amplamente usados em sistemas

científicos e corporativos: sua estrutura lógica e robustez para gerenciar

grandes volumes de dados são comprovadas (DATE, 2019).

19

No caso específico do Melissa, o banco de dados foi projetado para

armazenar as leituras dos sensores (temperatura, umidade, luminosidade, UV

e peso), além dos registros dos dispositivos e dos alertas de segurança. O

fluxo funciona assim: o módulo ESP8266 envia cada leitura ao servidor via uma

requisição HTTP segura. Essa requisição contém um token de autenticação

(uma API key) que identifica o dispositivo. O backend então processa a

requisição, valida a autenticidade dos dados e, por fim, insere tudo nas tabelas

corretas. Esse fluxo garante a rastreabilidade e a confiabilidade das

informações, o que permite tanto a análise em tempo real quanto a geração de

relatórios históricos.

Essa arquitetura web também foi projetada para permitir aprimoramentos

futuros. Ela facilita a integração de novas funcionalidades, como o envio de

notificações automáticas, um controle de permissões mais refinado ou a

visualização de múltiplas colmeias. Essa estrutura modular reforça o caráter

escalável e educativo do projeto, que pode ser expandido para outros

contextos. O desenvolvimento do sistema Melissa, portanto, exemplifica a

aplicação de princípios consolidados da engenharia de software e da

modelagem de dados em uma solução prática, voltada à pesquisa, à

sustentabilidade e à inovação tecnológica.

20

3. METODOLOGIA
Para o desenvolvimento do software, foi utilizada a abordagem Design

Science Research (DSR), metodologia muito usada na computação e na

engenharia de software, uma vez que ela foca na criação e validação de

artefatos tecnológicos para resolver problemas reais (HEVNER et al., 2004;

PEFFERS et al., 2007). Ela permite que a construção da interface web seja um

processo científico e iterativo.

Os dados em tempo real utilizados neste trabalho foram fornecidos pelo

protótipo de colmeia inteligente do projeto Melissa. A partir desses dados, foi

desenvolvida e testada a interface web proposta. Dessa forma, as etapas

metodológicas foram, assim, estruturadas: levantamento de requisitos,

modelagem e desenvolvimento, e validação do software.

3.1 TECNOLOGIAS UTILIZADAS E JUSTIFICATIVA

A seleção do conjunto de tecnologias para o Sistema Melissa foi guiada

diretamente pelos requisitos funcionais e não funcionais definidos no Apêndice

A , com foco em soluções de código aberto, baixo custo, segurança e facilidade

de implantação.

Para o desenvolvimento do backend, optou-se pela linguagem PHP 8.

Esta escolha se justifica por sua ampla adoção no mercado, vasta

documentação e, principalmente, pela facilidade de implementação em

servidores de hospedagem compartilhada, como a Hostinger, o que reduz o

custo de manutenção do projeto. A versão 8 foi especificamente escolhida por

suas melhorias significativas de performance e recursos de tipagem mais

fortes. Conforme detalhado na Fundamentação Teórica e implementado no

script ingest.php, a integração com o banco de dados foi feita exclusivamente

através da extensão PDO (PHP Data Objects). Esta foi uma decisão

arquitetural focada em segurança, sendo a principal ferramenta do PHP para

prevenir ataques de SQL Injection através de prepared statements, atendendo

diretamente ao requisito RNF03.

21

Como sistema gerenciador de banco de dados, o MySQL foi

selecionado, atendendo diretamente ao requisito RNF04 ("Banco relacional

(MySQL)"). O MySQL é uma solução open-source, robusta e amplamente

testada, capaz de gerenciar com eficiência os relacionamentos entre as tabelas

de leituras, dispositivos e alertas, sendo totalmente compatível com o ambiente

de hospedagem escolhido.

No que diz respeito à camada de apresentação (frontend), as

tecnologias base (HTML5, CSS3 e JavaScript) foram complementadas por

duas bibliotecas principais. Para a estilização, optou-se pelo PicoCSS.

Diferente de frameworks mais pesados, o PicoCSS é uma estrutura CSS

minimalista que foca em estilizar tags HTML semânticas, permitindo a criação

de uma interface limpa e atendendo ao requisito RNF05 ("Interface web deve

ser responsiva") com o mínimo de sobrecarga. Para a visualização de dados, a

biblioteca Chart.js foi escolhida por sua simplicidade de integração com dados

fornecidos pelo backend e sua capacidade de renderizar gráficos dinâmicos,

cumprindo o requisito RF08 ("Exibir dashboard com... gráficos").

A arquitetura de implantação, descrita na Figura 4 (Seção 4.3.2), utiliza a

plataforma de hospedagem Hostinger. Esta escolha se deu pelo seu baixo

custo e por oferecer o ambiente LAMP (Linux, Apache, MySQL, PHP) completo

e pré-configurado, necessário para a execução do backend (api/ingest.php) e

do banco de dados , além de prover o certificado SSL para comunicação

HTTPS, atendendo ao requisito RNF01.

Por fim, o hardware base (protótipo), desenvolvido em etapa anterior,

consiste na plataforma Arduino Mega e no módulo Wi-Fi ESP8266. O Mega foi

escolhido por sua grande quantidade de portas de I/O, necessárias para

conectar os múltiplos sensores, enquanto o ESP8266 é a solução padrão de

mercado para prover conectividade IoT de baixo custo, sendo o ator

responsável por enviar os dados ao servidor.

3.2 LEVANTAMENTO DE REQUISITOS

O levantamento de requisitos foi realizado com a elaboração de um

Documento de Requisitos. Esse foi o passo para formalizar o escopo do

22

projeto, definir os atores e as regras do sistema. O escopo principal deste

projeto é o desenvolvimento de um protótipo web. Esse protótipo coleta e

armazena os dados dos sensores (por meio do ESP8266) e, em seguida,os

disponibiliza em uma interface que funciona bem em qualquer tela.

Identificamos três atores principais para o sistema. O primeiro é o

Dispositivo (ESP8266), um ator não-humano que envia leituras e alertas. Os

outros dois são humanos: o Pesquisador, que consome os dados (dashboards,

gráficos), e o Administrador, um usuário com privilégios para gerenciar

colmeias, dispositivos e os próprios usuários.

Com os atores definidos, classificamos os requisitos em funcionais, não

funcionais e regras de negócio.

3.2.1 Requisitos Funcionais (RF)
Os requisitos funcionais definem o que o sistema de fato executa. Em

vez de uma lista, agrupamos as funcionalidades por área. Para a gestão do

sistema, definimos que o Administrador precisaria de módulos para Cadastrar

colmeias (RF01) e Cadastrar dispositivos (RF02), sendo esta última

responsável por gerar a API key única. Também incluímos um módulo completo

de autenticação de usuários (RF07) para proteger as rotas internas.

Para a ingestão de dados, que é o núcleo do sistema, o backend

precisaria Receber dados do ESP8266 (RF03) validando a API key, Persistir as

leituras no banco de dados (RF04), e o mais importante, Registrar alertas de

abertura não autorizada (RF05). Funções de apoio como Atualizar o status do

dispositivo (RF06) e Manter logs de rejeição (RF10) também foram

especificadas.

Por fim, para a apresentação ao usuário, o sistema deveria exibir um

dashboard completo com gráficos e alertas (RF08) e ter uma função de

exportação de dados em CSV (RF09).

3.2.2 Requisitos Não Funcionais (RNF)
Já os requisitos não funcionais focam nos atributos de qualidade do

sistema, como ele opera. Demos atenção especial à segurança, definindo que

toda comunicação usaria HTTPS (RNF01), as senhas seriam armazenadas

23

com hash seguro (RNF03), e o endpoint de ingestão teria rate limit (RNF06) e

logs de falha (RNF07). Em desempenho, a API de ingestão precisaria ser

rápida, com respostas abaixo de 500ms (RNF02). Na tecnologia, especificamos

o uso de um banco relacional MySQL (RNF04) e, na usabilidade, que a

interface seria obrigatoriamente responsiva (RNF05).

3.2.3 Regras De Negócio (RB)
Por fim, as regras de negócio ditam a lógica específica do Melissa.

Definimos que a API key é única e obrigatória (RB01) e que requisições sem

ela devem ser rejeitadas (RB02). Além disso, apenas dispositivos ativos podem

enviar dados (RB04). Duas regras de automação são fundamentais: o sistema

deve gerar um alerta CRITICAL automaticamente se a colmeia for aberta

(RB03), e o acesso a qualquer dashboard é restrito a usuários logados (RB05).

24

4. PROJETO E DESENVOLVIMENTO DO SISTEMA
Com base na fundamentação metodológica e nos requisitos levantados,

este capítulo apresenta a etapa de construção do artefato tecnológico. São

detalhadas as fases da engenharia de software, abrangendo a modelagem do

sistema, a arquitetura da solução, o projeto de banco de dados e os detalhes

da implementação.

4.1 MODELAGEM E CASOS DE USO

Com base nos requisitos funcionais e atores definidos na Seção 3.2,

realizamos a modelagem visual das funcionalidades do sistema. Para isso,

utilizou-se a notação UML (Unified Modeling Language) para criar o Diagrama

de Caso de Uso (Figura 1), que ilustra as interações entre os atores e as

principais funções do Sistema Web Melissa.

Figura 1 – Diagrama de Caso de Uso do Sistema Melissa

Fonte: O autor (2025)

25

O diagrama é estruturado em torno dos três atores identificados no

documento de requisitos: o Dispositivo (ESP8266), o Pesquisador e o

Administrador .

O ator Dispositivo (ESP8266) é o agente não-humano que interage com

um único caso de uso central: Enviar Dados (Leituras e Alertas). Este caso de

uso encapsula toda a lógica de ingestão. Ele representa o envio do payload

unificado para o backend (RF03) , que por sua vez é responsável por persistir

as leituras no banco (RF04) e, com base no conteúdo do payload, gerar

automaticamente o alerta de segurança (RF05, RB03).

O ator Pesquisador representa o usuário focado no consumo dos dados.

O diagrama ilustra suas interações com os casos de uso Autenticar usuário

(RF07) , Visualizar dashboard (RF08) e Ver gráficos e exportar CSV (RF09). A

autenticação, conforme a regra de negócio RB05, é um pré-requisito para que

o pesquisador possa acessar as telas de visualização e exportação.

Por fim, o ator Administrador é o usuário com privilégios de gestão. O

diagrama demonstra que ele realiza todas as ações do Pesquisador (autenticar,

visualizar e exportar). Adicionalmente, ele possui casos de uso exclusivos para

a administração do sistema, que são: Gerenciar colmeias e dispositivos e

Gerenciar Usuários. O primeiro caso de uso é a representação dos requisitos

RF01 e RF02. O segundo caso, Gerenciar Usuários, atende à descrição do ator

no documento de requisitos e ao requisito implícito de autenticação (RF07),

permitindo que o administrador crie, edite ou remova as contas de outros

usuários.

Essa modelagem foi crucial para validar o escopo e serviu como alicerce

para o design da arquitetura e do banco de dados, que serão detalhados a

seguir.

4.2 MODELAGEM DO BANCO DE DADOS

Seguindo o requisito não funcional RNF04, que previa o uso de um

banco de dados relacional, optamos pela tecnologia MySQL. A etapa de

modelagem foi essencial para estruturar como as informações seriam

armazenadas, garantindo integridade e performance. O Modelo

26

Entidade-Relacionamento (DER) final do sistema é apresentado na Figura 2, a

seguir.

Figura 2 – Modelo Entidade-Relacionamento (DER) do Sistema Melissa

Fonte: O autor (2025)

O modelo foi projetado para ser normalizado, garantindo a integridade

referencial através do uso de chaves primárias («PK») e estrangeiras («FK»).

As tabelas centrais do sistema são descritas a seguir.

A tabela users é responsável por armazenar os dados de autenticação e

permissão dos usuários, atendendo ao requisito RF07. Ela armazena o email

como identificador único («UN»), o password_hash (que armazena a senha

com hash seguro, conforme RNF03) e o role (enum 'admin' ou 'researcher'),

que define o nível de acesso do usuário.

As tabelas hives e devices gerenciam o cadastro do hardware. A tabela

hives armazena os dados da colmeia física (RF01), como sua location. A tabela

devices armazena os dados do módulo eletrônico (RF02), como a api_key

(«UN») usada para autenticar a API (RB01). O relacionamento de 1:N entre

hives e devices (através da chave estrangeira hive_id) permite que uma

colmeia possa, futuramente, ter múltiplos dispositivos de monitoramento.

27

A tabela readings é o núcleo de armazenamento de dados dos sensores,

atendendo ao RF04. Ela possui um relacionamento 1:N com a tabela devices,

indicando que um dispositivo gera múltiplas leituras ao longo do tempo. Esta

tabela foi projetada para armazenar cada variável ambiental (como temp_ext,

umid_int, peso, uv_index) em colunas dedicadas para facilitar consultas e a

geração de gráficos, ao mesmo tempo em que armazena o raw_json,

garantindo que nenhum dado bruto seja perdido.

A tabela alerts armazena os eventos de segurança (RF05). Ela possui

chaves estrangeiras que a relacionam tanto a devices quanto a hives,

permitindo consultas rápidas de alertas por colmeia ou por dispositivo. O

campo type (enum 'OPEN') e severity (enum 'CRITICAL') implementam a regra

de negócio RB03.

Finalmente, a tabela ingest_logs atende aos requisitos de

monitoramento RNF07 e RF10. Ela registra todas as tentativas de ingestão de

dados, sejam elas bem-sucedidas ou falhas. Colunas como status_code e

error_message são essenciais para depuração e para identificar falhas de

comunicação do hardware ou tentativas de acesso indevido.

4.3 ARQUITETURA DA SOLUÇÃO

4.3.1 Arquitetura De Componentes
Após a modelagem dos dados (Seção 4.2), o próximo passo foi definir a

arquitetura lógica do software. Para isso, foi elaborado o Diagrama de

Componentes (Figura 3), que ilustra os principais componentes de software do

sistema Melissa e as dependências entre eles.

28

Figura 3 – Diagrama de Componentes do Sistema Melissa

Fonte: O autor (2025)

A arquitetura foi logicamente dividida em quatro pacotes ou camadas

principais: Dispositivo, Backend PHP, Frontend Web e o banco de dados

MySQL.

O pacote Dispositivo representa o hardware físico. Ele contém um único

componente de software, o ESP8266 Client. Este componente é responsável

por coletar os dados e reportar o payload unificado . Sua única dependência é

o componente de ingestão no backend, com o qual se comunica via HTTP

POST.

O pacote Backend PHP é o núcleo do sistema, onde residem as regras

de negócio. Ele é composto por três componentes principais. O primeiro é a

API Ingestão (api/ingest.php), uma interface que recebe os dados do ESP8266

Client. Ela é responsável por validar a API key (RB01, RB02) , persistir as

leituras (RF04) e, crucialmente, gerar os registros de alerta (RF05) no MySQL

com base no payload recebido (RB03). O segundo componente é o Auth e

Sessão, o pilar central de segurança que implementa o requisito RF07. Ele é

consumido por todos os componentes do frontend e se comunica com o

MySQL para validar as credenciais do usuário. Por fim, o Serviço de Alertas é

responsável por consultar e formatar os dados de alertas para o frontend,

enquanto a API Ingestão cria os alertas, este serviço é consumido pelos

componentes Dashboard e Lista de Alertas para ler e exibir os alertas (RF08).

29

O pacote Frontend Web representa a camada de apresentação. Ele é

composto pelos módulos que o Pesquisador e o Administrador utilizam, como

Dashboard, Gráficos, Lista de Alertas e Administração. Como ilustrado, todos

esses componentes dependem da validação do componente Auth e Sessão

para funcionar, garantindo que nenhum usuário não autenticado acesse os

dados (RB05).

Por fim, o MySQL é o componente de persistência de dados. O

diagrama reforça uma decisão arquitetural importante: o banco de dados nunca

é acessado diretamente pelo Dispositivo ou pelo Frontend Web. O acesso é

sempre mediado pelo Backend PHP, o que centraliza as regras de negócio e

aumenta a segurança do sistema.

4.3.2 Arquitetura de Implantação
Após a definição da arquitetura lógica de componentes (Seção 4.3.1), a

arquitetura física e de implantação detalha onde cada componente de software

é executado e como os nós de hardware se comunicam. O Diagrama de

Implantação (Figura 4) ilustra essa estrutura física.

Figura 4 – Diagrama de Implantação do Sistema Melissa

30

Fonte: O autor (2025).

A arquitetura de implantação do sistema é distribuída em três nós físicos

principais, como apresentado na Figura 4: o Campo/Laboratório, o Cliente do

Usuário e o servidor Hostinger.

O nó Campo/Laboratório representa o protótipo físico da colmeia

inteligente. Ele é composto pelo Arduino/Mega, que controla os sensores, e

pelo ESP8266, que atua como o dispositivo de comunicação. O ESP8266 se

conecta à Rede Wi-Fi local para interagir com o servidor.

O nó Hostinger representa o ambiente de hospedagem na nuvem onde a

aplicação web reside. Este nó é composto por dois serviços principais. O

primeiro é o Servidor Web, que hospeda o artefato Backend PHP. Este artefato

monolítico contém toda a lógica da aplicação, incluindo a API de ingestão, o

sistema de Auth e o Painel (frontend). O segundo serviço é o MySQL, o

servidor de banco de dados que armazena fisicamente todas as informações,

conforme o modelo da Seção 4.2.

O nó Cliente do Usuário representa o dispositivo de acesso do

Pesquisador ou Administrador. Ele executa o Navegador Web (Browser), que é

o ambiente onde o Painel (frontend) é renderizado.

O diagrama ilustra os dois fluxos de comunicação primários do sistema.

O primeiro é o fluxo de ingestão de dados, onde o ESP8266 envia uma

requisição HTTP (POST) através da Rede Wi-Fi para o Servidor Web na

Hostinger. O segundo é o fluxo de interação do usuário, onde o Navegador

Web se comunica com o mesmo Servidor Web via HTTPS para realizar

operações como login, visualização do dashboard e gerenciamento. Em ambos

os fluxos, o Backend PHP é o único componente que processa as requisições

e se comunica com o banco de dados MySQL.

4.4 MODELAGEM COMPORTAMENTAL

4.4.1 Interações de Ingestão de Dados
Para detalhar o comportamento dinâmico do sistema, modelamos o fluxo

de interação mais crítico: a ingestão de dados e alertas provenientes do

31

dispositivo ESP8266. O Diagrama de Sequência (Figura 5) ilustra a troca de

mensagens passo a passo entre o ESP (o dispositivo), a API Ingestão (o

backend) e o DB (banco de dados), refletindo a arquitetura de payload

unificado definida no Documento de Requisitos e implementada nos códigos

do sistema.

Figura 5 – Diagrama de Sequência do fluxo de Ingestão de Dados

Fonte: O autor (2025).

A sequência é iniciada pelo Ator ESP, que envia uma requisição POST

para o endpoint api/ingest.php. Conforme a nota no diagrama, a requisição

inclui o header X-API-Key (RB01) e um corpo JSON contendo o payload

unificado com todas as leituras dos sensores e o status de segurança ({leituras

+ sensores + security}).

Ao receber a requisição, a API Ingestão primeiro consulta o DB para

validar a X-API-Key e verificar se o dispositivo está ativo (checar active == 1),

atendendo às regras de negócio RB02 e RB04. Após validar o dispositivo e o

payload (incluindo a formatação da data, como implementado no ingest.php), a

32

API executa as operações de escrita no DB. Primeiro, atualiza o campo

last_seen na tabela devices (RF06). Em seguida, insere os dados dos sensores

na tabela readings (RF04).

Posteriormente, a API Ingestão avalia o status de segurança recebido no

payload. Conforme modelado pelo fragmento opcional (opt) com a condição [==

true], apenas se o campo security.opened for verdadeiro, a API executa um

INSERT adicional na tabela alerts (RF05, RB03).

Finalmente, tendo concluído com sucesso as operações no banco de

dados (seja apenas a leitura ou a leitura mais o alerta), a API Ingestão retorna

uma resposta 201 Created para o ESP, indicando que os dados foram

recebidos e processados.

Esta modelagem detalha a implementação do fluxo principal do sistema,

validando a interação entre o hardware e o backend e demonstrando o

cumprimento dos requisitos funcionais e regras de negócio relacionadas à

ingestão de dados.

4.4.2 Interação em Falhas de Autenticação
Além do fluxo de sucesso na ingestão de dados, é crucial modelar como

o sistema lida com falhas, especialmente as de autenticação. O Diagrama de

Sequência (Figura 6) ilustra o comportamento do sistema quando o dispositivo

ESP tenta enviar dados com uma X-API-Key inválida ou ausente, conforme a

regra de negócio RB02 e os requisitos de log RF10 e RNF07.

33

Figura 6 – Diagrama de Sequência do fluxo de Falha de Autenticação (API
Key Inválida)

Fonte: O autor (2025).

A sequência é iniciada pelo Ator ESP enviando a requisição POST para

api/ingest.php. A nota no diagrama indica que, neste cenário, o header

X-API-Key está inválido ou ausente.

A API Ingestão recebe a requisição e, como primeiro passo de

validação, consulta o DB para encontrar um dispositivo correspondente à API

Key fornecida (SELECT device ...). Como a chave é inválida, o DB retorna null

(dispositivo não encontrado) para a API.

Ao detectar que nenhum dispositivo válido foi encontrado, a API

Ingestão interrompe o fluxo de processamento normal. Antes de responder ao

ESP, ela executa uma operação de escrita no DB: um INSERT INTO

ingest_logs. Este registro de log armazena detalhes da tentativa falha, incluindo

o status 401 e a mensagem de erro 'invalid_api_key', cumprindo os requisitos

de monitoramento e auditoria RF10 e RNF07.

Finalmente, a API Ingestão retorna a resposta 401 Unauthorized para o

ESP, indicando que a requisição foi rejeitada por falta de autenticação válida,

conforme especificado na regra de negócio RB02.

Esta modelagem demonstra o tratamento de erro implementado no

backend, garantindo que apenas dispositivos autenticados possam enviar

34

dados e que todas as tentativas inválidas sejam devidamente registradas para

análise posterior.

4.4.3 Fluxo de Atividade
Para complementar a visão dinâmica das interações, utilizou-se um

Diagrama de Atividade UML para modelar o fluxo de controle interno do

processo mais crítico do sistema: a ingestão de dados realizada pelo

componente API Ingestão (api/ingest.php). O diagrama (Figura 7) detalha a

sequência de passos e as decisões lógicas executadas pelo backend ao

receber uma requisição do dispositivo ESP8266.

Figura 7 – Diagrama de Atividade do Fluxo de Ingestão de Dados

Fonte: O autor (2025).

O fluxo inicia com a ação Receber POST com X-API-Key, representando

a chegada da requisição HTTP (RF03). A primeira decisão (API key válida e

device ativo?) verifica a autenticidade e a autorização do dispositivo,

consultando o banco de dados conforme as regras RB01, RB02 e RB04 . Em

caso de falha (não), o sistema executa as ações Log 401/403 (RF10, RNF07)

e Responder 401/403, terminando o fluxo imediatamente ao direcionar para o

nó final, refletindo o comportamento da função reject().

35

Se a autenticação for bem-sucedida (sim), o fluxo prossegue para a

ação Validar payload, onde o backend verifica a estrutura e o formato dos

dados recebidos (como a data/hora). A decisão seguinte (Payload válido?)

direciona o fluxo: em caso de falha (não), as ações Log 422 (RF10, RNF07) e

Responder 422 são executadas, terminando o fluxo imediatamente ao

direcionar para o nó final.

Se o payload for válido (sim), o sistema executa as ações principais de

persistência: Gravar leitura em readings (RF04) e Atualizar last_seen (RF06).

Em seguida, a decisão (security.opened = true?) verifica o status de segurança

reportado no payload (RB03). Se a condição for verdadeira (sim), a ação

Gravar alerta UNAUTHORIZED_OPEN (RF05) é executada. Caso a condição

seja falsa (não), esta ação é contornada. Ambos os caminhos (com ou sem

gravação de alerta) convergem em um ponto de junção antes de prosseguir

para a ação final Responder 201, que sinaliza o sucesso da operação para o

dispositivo ESP8266 e encerra o fluxo no nó final.

Este diagrama detalha a lógica implementada no backend (ingest.php),

assegurando que todos os requisitos funcionais, não funcionais e regras de

negócio pertinentes ao fluxo de ingestão, incluindo o tratamento de erros e o

fluxo condicional de alertas, sejam corretamente contemplados.

4.5 DETALHES DA IMPLEMENTAÇÃO

Com as tecnologias já justificadas na Seção 3.1, passamos a detalhar a

implementação dos componentes críticos do sistema. Focamos em três áreas

principais: a API de ingestão, a segurança dos usuários e a visualização dos

dados.

O principal ponto de entrada para o dispositivo é a API de Ingestão. Ela

foi implementada como um único script, api/ingest.php, o que centraliza o

recebimento de dados. A implementação segue o fluxo do Diagrama de

Atividade (Figura 7). A requisição é lida usando php://input, e a primeira etapa é

sempre a validação da X-API-Key (RB02), que envolve uma consulta SELECT

no banco.

36

Um aspecto importante da implementação, visando a integridade dos

dados (RNF04), é o uso de transações SQL. O script inicia uma transação com

pdo->beginTransaction() antes de qualquer escrita. Isso garante que as

operações (UPDATE devices.last_seen (RF06) , INSERT INTO readings

(RF04) e o INSERT condicional em alerts) sejam atômicas.

Se qualquer erro ocorrer durante esse processo, o pdo->rollBack() é

acionado, desfazendo todas as operações. Isso garante que o banco de dados

não entre em um estado inconsistente.

Para a Segurança e Autenticação de Usuários, o foco foi atender aos

requisitos RF07 , RNF03 e RB05. Implementamos um sistema de autenticação

baseado em Sessões PHP. As senhas dos usuários, conforme o RNF03, não

são armazenadas em texto claro; elas são protegidas no banco usando a

função password_hash() nativa do PHP.

No fluxo de login (Autenticar usuário), o script de autenticação compara

a senha fornecida com o hash armazenado usando a função password_verify().

Em caso de sucesso, as credenciais do usuário (como id e role) são

armazenadas na $_SESSION do PHP. Todas as páginas protegidas (como o

Dashboard e a Administração) verificam no início se a sessão é válida,

redirecionando para o login caso contrário, o que cumpre a regra de negócio

RB05.

Visualização de Dados (Dashboard e Gráficos) A implementação do

Dashboard e dos Gráficos (RF08) envolve uma colaboração entre o backend

PHP e o frontend JavaScript. O script PHP, no lado do servidor, é responsável

por executar as consultas SQL no MySQL. Ele busca, por exemplo, as últimas

N leituras para os cartões de "tempo real" e um conjunto de dados históricos

(ex: últimas 24 horas) para os gráficos.

Esses dados são então formatados pelo PHP (geralmente em um

formato JSON embutido na própria página HTML) e entregues ao cliente. No

navegador, a biblioteca Chart.js é inicializada via JavaScript. Ela lê esse JSON

de dados e renderiza os gráficos interativos de temperatura, umidade e peso,

permitindo que o Pesquisador analise o histórico das variáveis ambientais.

37

4.6 ESTRATÉGIA DE TESTES E VALIDAÇÃO

A etapa final da metodologia DSR (Design Science Research) é a

avaliação do artefato. Para validar o Sistema Web Melissa, foi definida uma

estratégia de testes em três frentes: testes de API (caixa-preta), testes de

integração ponta-a-ponta e testes funcionais da interface (frontend). O objetivo

foi verificar o cumprimento de todos os requisitos funcionais, não funcionais e

regras de negócio definidos no Apêndice A .

A validação inicial do backend (api/ingest.php) foi realizada por meio de

testes de API (caixa-preta), simulando as requisições do dispositivo com uma

ferramenta de cliente HTTP (Postman). Testamos o cenário de sucesso

enviando um POST com uma X-API-Key válida e um payload JSON completo .

Verificou-se se o sistema retornou 201 Created e se os dados foram persistidos

corretamente nas tabelas readings e devices, conforme o fluxo da Figura 7. O

fluxo de alerta também foi validado enviando um payload com security.opened

definido como true, o que deveria criar um registro na tabela alerts (RF05,

RB03). Adicionalmente, os cenários de exceção foram testados conforme a

Figura 6, enviando requisições com X-API-Key inválida (esperando 401

Unauthorized), dispositivo inativo (esperando 403 Forbidden) e JSON mal

formatado (esperando 422 Unprocessable Entity), verificando se todas as

falhas foram registradas na tabela ingest_logs (RF10, RNF07).

Para validar o sistema em condições reais de operação, realizamos

testes de integração ponta-a-ponta (end-to-end). Nesta fase, conectamos o

protótipo de hardware (Arduino + ESP8266) à rede Wi-Fi, permitindo que ele

enviasse dados reais para o ambiente de produção na Hostinger. Em paralelo,

acessamos o Dashboard (RF08) no navegador. Validamos que as leituras

(temperatura, umidade, luminosidade, etc.) que apareciam na interface

refletiam os dados enviados pelo protótipo. O teste de segurança (RF05, RB03)

foi o mais importante: disparamos fisicamente o sensor de abertura no protótipo

e confirmamos que o alerta UNAUTHORIZED_OPEN foi exibido na Lista de

Alertas da interface web em poucos segundos.

Por fim, os testes funcionais da interface (frontend) foram realizados

manualmente, baseados nos casos de uso (Figura 1). A autenticação e o

38

controle de acesso (RF07, RB05) foram validados ao tentar acessar rotas

protegidas sem login e ao verificar as permissões distintas entre os perfis

Pesquisador e Administrador. As funcionalidades principais, como a exibição de

dados no Dashboard, a renderização dos Gráficos (RF08) e a Exportação CSV

(RF09), foram verificadas quanto ao seu funcionamento correto. O requisito de

responsividade (RNF05) foi validado utilizando as ferramentas de

desenvolvedor do navegador para simular o acesso em diferentes tamanhos de

tela.

Todos os testes foram executados com o objetivo de validar as métricas

de avaliação definidas (Apêndice A, Seção 11) . A latência da API (RNF02) foi

aferida com o Postman; a taxa de detecção de abertura (100%) foi validada no

teste ponta-a-ponta; e a taxa de ingestão bem-sucedida (> 99,5%) foi avaliada

por meio de um script de teste de carga.

5. RESULTADOS E DISCUSSÃO
A finalidade desta seção é demonstrar como o protótipo da interface web

atende, na prática, aos objetivos especificados. Serão apresentadas as

principais telas do Sistema Melissa, conectando suas funcionalidades

diretamente aos requisitos funcionais (RF) e regras de negócio (RB)

estabelecidas no Documento de Requisitos (Apêndice A).

5.1 APRESENTAÇÃO DA INTERFACE WEB

A interface web é o principal ponto de interação entre os atores humanos

(Pesquisador e Administrador) e os dados coletados pelo dispositivo. O seu

desenvolvimento focou na responsividade (RNF05) e na clareza da

informação.

A seguir, apresentamos as telas que compõem o fluxo de visualização e

gerenciamento do sistema (Figura 8).

5.1.1 Autenticação e Controle de Acesso
O acesso ao Sistema Melissa é a primeira barreira de proteção e

controle, implementando diretamente os requisitos de segurança da

informação. A interface não permite qualquer visualização de dados sem a

devida autenticação, em conformidade estrita com a regra de negócio RB05

39

"Apenas usuários autenticados podem acessar dashboards e relatórios" e o

requisito funcional RF07 "Autenticar usuários por e-mail e senha".

A tela de login, apresentada na Figura 8, é a porta de entrada do

sistema.

Figura 8 – Tela de Autenticação do Sistema Melissa

Fonte: O autor (2025).

Como demonstrado na figura, a tela foi projetada com uma estética

minimalista, alinhada à escolha do framework PicoCSS, garantindo seu

funcionamento adequado em dispositivos móveis e atendendo ao requisito de

responsividade (RNF05). Conforme detalhado na implementação, o backend

valida as credenciais fornecidas (Email e Senha) contra os hashes seguros

armazenados na tabela users do banco de dados, atendendo ao requisito

RNF03.

Ao autenticar-se com sucesso, o usuário é direcionado ao painel

principal do sistema.

5.1.2 Painel de Controle (Dashboard)
O Dashboard, ou Painel de Controle, é a tela central do Sistema Melissa

e o principal instrumento de trabalho do ator Pesquisador. Esta tela foi

projetada para consolidar e apresentar, de forma clara e acessível, o volume de

40

dados coletados, atendendo diretamente ao requisito RF08 "Exibir dashboard

com últimas leituras, gráficos de variáveis ambientais e lista de alertas".

As Figuras 9 e 10 ilustram os componentes desta tela.

Figura 9 – Dashboard do Sistema Melissa (Filtros, Leituras e Alertas)

Fonte: O autor (2025).

Como observado na Figura 9, o topo da tela apresenta os controles de

visualização. O usuário pode selecionar a colmeia que deseja analisar (neste

caso, 'HIVE-01') e definir um período de tempo (Início e Fim) para a consulta.

Adjacente a estes filtros, encontram-se os botões "Exportar Leituras (CSV)" e

"Exportar Alertas (CSV)", que implementam diretamente o requisito funcional

RF09 – "Filtrar e exportar dados e alertas em CSV".

Abaixo dos filtros, a tela se divide em dois painéis principais:

1.​ Última Leitura: Este painel fornece ao pesquisador a visão mais imediata

da condição da colmeia. Ele exibe o timestamp da última comunicação

bem-sucedida ("Atualizado em: 04/11/2025 às 15:12"), uma

funcionalidade que depende da atualização do campo last_seen (RF06)

no banco de dados. O painel consolida todas as variáveis ambientais

coletadas (Temperatura, Umidade, Luminosidade, Peso e UV) ,

persistidas na tabela readings (RF04).

2.​ Alertas Recentes: Este é o componente de segurança do sistema. Sua

função é exibir, de forma prioritária, qualquer evento de violação

detectado. Na captura de tela, o sistema informa "Nenhum alerta

41

recente", indicando um estado de normalidade operacional. É neste

painel que um alerta do tipo UNAUTHORIZED_OPEN seria exibido,

caso o backend o registrasse (RF05 , RB03).

A segunda parte do dashboard é dedicada à análise histórica, conforme

detalhado na Figura 10.

Figura 10 – Dashboard do Sistema Melissa (Gráficos Históricos)

Fonte: O autor (2025).

Esta seção implementa a exibição de "gráficos de variáveis ambientais"

(parte do RF08). Utilizando a biblioteca Chart.js (justificada na Seção 3.1), a

interface renderiza o histórico das últimas 24 horas para as principais variáveis.

A Figura 10 demonstra a visualização dos gráficos de Temperatura (Interna e

Externa), Umidade (Interna e Externa), Peso, Índice UV e Luminosidade

(Interna e Externa) . Essa visualização histórica é muito importante para que o

pesquisador possa identificar tendências, padrões de comportamento ou

anomalias que não seriam perceptíveis analisando apenas a última leitura.

5.1.3 Gerenciamento do Sistema
Enquanto o dashboard é o foco do ator Pesquisador, o Sistema Melissa

possui uma área administrativa dedicada, acessível apenas a usuários com

perfil de 'admin', conforme definido nos atores. Esta área implementa os casos

de uso de gerenciamento (Figura 1) e permite a configuração da base do

sistema.

42

A Figura 11 apresenta a tela de Gerenciamento de Usuários.

Figura 11 – Tela de Gerenciamento de Usuários

Fonte: O autor (2025).

Esta tela é a implementação prática da gestão de contas de acesso

(RF07 – "Autenticar usuários por e-mail e senha"). Nela, o Administrador pode

executar o ciclo completo de gerenciamento de contas. O formulário "Novo

usuário" permite o cadastro de novas contas, exigindo Nome, Email, Senha e a

definição de um Perfil. Este campo "Perfil", com as opções 'researcher' e

'admin', implementa o controle de acesso baseado em papéis (roles), conforme

modelado nos Atores e na tabela users. Complementando a criação, a seção

"Lista" exibe todos os usuários cadastrados no sistema, permitindo ao

administrador editar ou excluir contas existentes, o que completa a gestão de

autenticação.

Esta funcionalidade é fundamental para o ciclo de vida da aplicação,

permitindo que o administrador conceda ou revogue o acesso de

pesquisadores ao sistema.

5.1.4 Gerenciamento de Colmeias e Dispositivos
Complementando a gestão de usuários, a área administrativa permite o

gerenciamento dos componentes físicos (ou lógicos) do sistema: as colmeias e

os dispositivos. A Figura 12 ilustra a interface de gerenciamento de colmeias.

43

Figura 12 – Tela de Gerenciamento de Colmeias

Fonte: O autor (2025).

Esta tela implementa diretamente o requisito RF01 – "Cadastrar

colmeias com código, descrição e localização". O formulário "Nova colmeia"

permite ao Administrador registrar uma nova colmeia física no sistema,

associando a ela um Código (ex: 'HIVE-01'), uma Descrição (ex: 'Protótipo de

colmeia inteligente') e sua Localização (ex: 'Laboratório'). A "Lista" exibe os

registros existentes na tabela hives, permitindo sua edição ou exclusão.

Este cadastro é a etapa inicial para a configuração de um novo ponto de

monitoramento. Após o registro da colmeia, o administrador pode então

vincular o módulo de hardware (ESP8266) a este registro.​

A Figura 13 apresenta a tela de Gerenciamento de Dispositivos, que conclui

este fluxo de configuração.

44

Figura 13 – Tela de Gerenciamento de Dispositivos

Fonte: O autor (2025).

Esta interface é a implementação direta do RF02 – "Cadastrar

dispositivos vinculados a colmeias, gerando API key única". No formulário

"Novo dispositivo", o Administrador seleciona a "Colmeia" (criada na etapa

anterior, Figura 11) e define um nome para o hardware (ex: 'melissa-esp-02'),

estabelecendo o relacionamento modelado na Seção 4.2.

A "Lista" de dispositivos é onde os resultados mais importantes desta

etapa são visualizados. A coluna "API Key" exibe o identificador único gerado

pelo sistema (ex: 0352cc...), que cumpre a RB01 – "Cada dispositivo possui

uma API key única e obrigatória". Esta chave é o token de autenticação que

deve ser gravado no ESP8266 para permitir o envio de dados. Além disso, a

lista exibe o "Status" do dispositivo ('Ativo'), que é a condição verificada pela

API para aceitar leituras (RB04) , e o "Último contato", que é o timestamp da

última ingestão bem-sucedida, atendendo ao RF06 – "Atualizar

automaticamente o campo last_seen".

Com a apresentação destas telas administrativas (Usuários, Colmeias e

Dispositivos), o ciclo de configuração e uso do sistema pela interface web está

demonstrado. A Seção 5.1 validou visualmente o artefato. A próxima seção

(5.2) focará em validar o comportamento do sistema, apresentando os

resultados dos testes de API e integração ponta-a-ponta.

45

5.2 VALIDAÇÃO DOS TESTES E ADERÊNCIA AOS REQUISITOS

Após a apresentação da interface web (Seção 5.1), esta seção foca em

demonstrar o comportamento do sistema e validar sua aderência aos requisitos

e regras de negócio. Conforme a estratégia definida na Seção 4.6, a validação

foi dividida em frentes de teste, começando pela avaliação do backend (API de

ingestão) e pela integração ponta-a-ponta.

5.2.1 Testes de API (Caixa-Preta) e Integração Ponta-a-Ponta
A validação do backend (api/ingest.php) foi realizada por meio de testes

de API (caixa-preta), simulando as requisições do dispositivo ESP8266 com um

cliente HTTP (Postman).

O primeiro teste visou validar o fluxo principal de ingestão de dados. Foi

simulado um envio de payload completo, com uma X-API-Key válida. A Figura

14 apresenta o resultado bem-sucedido desta requisição.

46

Figura 14 – Teste de API: Sucesso na Ingestão (Postman)

Fonte: O autor (2025).

O sistema respondeu com “201 Created”, confirmando que o requisito

RF03 (Receber dados do ESP8266) foi atendido. A resposta JSON {"ok": true,

"reading_id": 132} demonstra que a persistência no banco (RF04) ocorreu com

sucesso. Adicionalmente, o tempo de resposta de 330 ms atende com folga ao

requisito não funcional RNF02, que estipulava uma latência de ingestão abaixo

de 500 ms (p95).

O teste mais crítico foi a validação da integração entre o payload do

dispositivo e a interface de alertas. Para isso, uma segunda requisição foi

enviada via Postman, desta vez com o campo de segurança alterado para

{"security": { "opened": true }}. O sistema respondeu com “201 Created”

indicando o sucesso da ingestão e, como resultado, gerou o alerta de

segurança, conforme a RB03 ("Se security.opened = true, o sistema gera

automaticamente um alerta CRITICAL").

47

A Figura 15 captura o resultado deste teste, visualizado diretamente no

Dashboard do sistema.

Figura 15 – Teste de Integração: Alerta de Segurança no Dashboard

Fonte: O autor (2025).

Esta tela valida o fluxo de segurança ponta-a-ponta. O payload enviado

(Temp: 30.1°C, Peso: 22.75 kg, etc.) foi corretamente persistido (RF04) e

exibido em "Última Leitura". Mais importante, o painel "Alertas Recentes" exibe

"Abertura não autorizada detectada", comprovando que o backend

implementou a RB03, registrou o alerta (RF05), e o frontend o exibiu

corretamente para o usuário, cumprindo o RF08.

Para completar a validação da API, foram testados os cenários de falha.

A Figura 16 demonstra a tentativa de envio de dados utilizando uma x-api-key

inválida.

48

Figura 16 – Teste de API: Falha de Autenticação (Postman)

Fonte: O autor (2025).

O resultado comprova a implementação da RB02 ("Requisições sem

X-API-Key válida devem ser rejeitadas (401)"). O servidor rejeitou a requisição

com o status 401 Unauthorized e retornou a mensagem de erro

invalid_api_key, conforme modelado no Diagrama de Sequência de Falha

(Figura 6).

Finalmente, foi verificado se esta falha foi devidamente registrada,

conforme exigido pelos requisitos de auditoria RF10 e RNF07.

Figura 17 – Teste de API: Log da Falha de Autenticação (Banco de Dados)

Fonte: O autor (2025).

49

A Figura 17 evidencia que a tabela ingest_logs registrou a tentativa de

falha. O log armazenou o status_code (401), a error_message (invalid_api_key)

e o payload rejeitado, cumprindo integralmente os requisitos de log. O campo

device_id está corretamente registrado como NULL, pois o sistema não pôde

identificar o dispositivo devido à chave inválida.

5.2.2 Testes Funcionais da Interface
A segunda frente de validação focou nos testes manuais da interface

web, verificando os requisitos de acesso e usabilidade, conforme a estratégia

da Seção 4.6.

O primeiro teste funcional visou validar o controle de acesso baseado

em papéis, que restringe o acesso a usuários autenticados (RB05) e separa as

permissões dos atores. A Figura 18 demonstra a interface do sistema quando

acessada por um usuário com perfil de "Pesquisador".

Figura 18 – Teste Funcional: Visão do Ator "Pesquisador"

Fonte: O autor (2025).

A tela comprova que o usuário "Pesquisador" pode se autenticar (RF07)

e acessar o Dashboard para visualizar dados e alertas, conforme seu caso de

uso (Figura 1). Crucialmente, o menu de navegação superior não exibe os links

"Usuários", "Colmeias" ou "Dispositivos". Isso confirma que as rotas

administrativas estão protegidas e são inacessíveis a este perfil,

implementando corretamente a separação de privilégios entre os atores

"Pesquisador" e "Administrador".

50

O teste final validou o requisito não funcional de usabilidade RNF05 –

"Interface web deve ser responsiva (desktop e mobile)". A interface foi

inspecionada em um simulador de dispositivo móvel, como apresentado na

Figura 19.

Figura 19 – Teste Funcional: Responsividade da Interface em Visão Mobile

Fonte: O autor (2025).

As capturas de tela demonstram que, em uma tela estreita, o layout do

dashboard se adapta. Os componentes, como "Última Leitura", "Alertas

Recentes" e "Gráficos", que são exibidos lado a lado em um desktop, são aqui

empilhados verticalmente. Esta adaptação confirma que o requisito RNF05 foi

51

atendido, garantindo que os usuários possam acessar e consumir os dados de

forma clara em smartphones ou tablets.

O teste funcional final validou a capacidade de exportação de dados do

sistema, um requisito-chave para o ator Pesquisador. A Figura 20 mostra o

resultado da utilização da funcionalidade "Exportar Leituras (CSV)".

Figura 20 – Teste Funcional: Resultado da Exportação de Dados (CSV)

Fonte: O autor (2025).

A imagem comprova que o sistema gerou com sucesso um arquivo .csv

contendo os dados históricos de leituras. O arquivo está corretamente

formatado, com timestamps e todas as variáveis ambientais (temp_ext,

temp_int, umid_ext, peso, uv_index, etc.) separadas em colunas, prontas para

análise em softwares externos (como Excel ou Google Sheets). Este resultado

cumpre integralmente o requisito RF09 – "Filtrar e exportar dados e alertas em

CSV".

52

5.3 DISCUSSÃO DOS RESULTADOS

Do ponto de vista metodológico, uma das principais dificuldades e, ao

mesmo tempo, um achado relevante esteve na estratégia de validação. O

planejamento previa testes de integração ponta-a-ponta conectando o

hardware (Arduino + ESP8266) ao sistema. No entanto, durante a fase de

desenvolvimento deste TCC, o protótipo físico encontrava-se em um processo

paralelo de manutenção e calibração de sensores. Diante disso, optou-se por

uma abordagem metodológica rigorosa de testes de API (caixa-preta),

utilizando a ferramenta Postman para simular com precisão o comportamento e

os payloads do dispositivo ESP8266. Essa decisão, embora motivada por uma

limitação, permitiu um ambiente de teste controlado e isolado. A estratégia

adotada demonstra que o software atende aos requisitos especificados e está

tecnicamente pronto para a integração com o hardware em campo, com uma

API de ingestão segura e aderente às regras de negócio.

À luz dos trabalhos correlatos apresentados na Seção 1.6, os resultados

obtidos com o Sistema Melissa permitem posicionar este artefato dentro do

contexto da Apicultura de Precisão baseada em IoT. Estudos como o de SILVA

(2017) enfatizam o monitoramento não invasivo das colmeias, enquanto

ZACEPINS et al. (2020) discutem a Apicultura de Precisão em três grandes

fases, coleta, análise e aplicação de dados, destacando a necessidade de

sistemas que transformem medições em decisões práticas. Já trabalhos

recentes, como os de CARDOSO et al. (2023) e MARQUES et al. (2024),

demonstram o uso de protótipos de baixo custo e arquiteturas IoT para coleta

de temperatura, umidade, peso e outros parâmetros ambientais, reforçando a

viabilidade técnica de monitorar colônias individuais em tempo quase real.

Os testes apresentados nas Figuras 14 a 20 evidenciam que o Sistema

Melissa avança principalmente nas etapas de coleta e apresentação de dados,

em consonância com essa literatura, mas também adiciona elementos que não

aparecem de forma integrada nos trabalhos correlatos. A API de ingestão

validada por testes de caixa-preta atende aos requisitos de latência,

autenticação por X-API-Key e registro de logs, construindo uma base sólida

para a fase de coleta e armazenamento mencionada por ZACEPINS et al.

53

(2020). Ao mesmo tempo, o dashboard, a exportação em CSV e a

responsividade da interface aproximam o sistema da fase de análise, ao

fornecer visualizações históricas e mecanismos de extração de dados

adequados à rotina de pesquisadores.

O trabalho de CARDOSO et al. (2023) é particularmente próximo deste

projeto, ao propor uma solução IoT com transmissão via LoRa, gateway ESP32

e um front-end construído em Power Apps integrado ao Excel. Apesar dessa

contribuição, os próprios autores relatam limitações na integração

protótipo–software: dados de temperatura e umidade sendo recebidos como

string (resultando em valores “nan” nos gráficos), leituras de peso fora de

escala pela ausência de calibração e parte da interface descrita apenas como

projeto ideal, não como implementação plenamente funcional. Em contraste, os

resultados do Sistema Melissa mostram que a API de ingestão e a interface

web operam sobre dados devidamente tipados e calibrados, permitindo

gráficos históricos consistentes e geração de arquivos CSV prontos para

análise em ferramentas externas. Enquanto CARDOSO et al. enfatizam as

dificuldades do Power Apps em interpretar os dados de sensores, o Melissa

resolve justamente essa lacuna ao entregar uma camada de apresentação

estável, desenvolvida especificamente para o sistema e integrada de forma

nativa ao banco de dados relacional.

Além disso, a solução proposta neste trabalho incorpora de forma

explícita um componente de segurança física da colmeia, por meio da regra de

negócio que gera alertas em caso de abertura não autorizada. Essa dimensão

de segurança ativa, validada tanto na API (detecção do campo security.opened

= true) quanto na interface (“Alertas Recentes” exibindo eventos críticos), não é

descrita como foco central nos trabalhos de SILVA (2017), ZACEPINS et al.

(2020), CARDOSO et al. (2023) ou MARQUES et al. (2024), que se

concentram majoritariamente no monitoramento ambiental e na visualização de

dados. Assim, os resultados indicam que o Sistema Melissa amplia o escopo

típico das soluções de monitoramento apícola ao integrar monitoramento

ambiental e segurança física em uma única plataforma web.

54

Por fim, ao dialogar com a agenda de desafios proposta por ZACEPINS

et al. (2020), observa-se que o Melissa representa um grande passo na direção

de sistemas de suporte à decisão em Apicultura de Precisão. Embora este

trabalho não implemente ainda um módulo completo de recomendação ou

automação de ações, a infraestrutura construída composta por API de ingestão

validada, backend com regras de negócio, interface web responsiva e

mecanismo de exportação de dados, atende às fases iniciais do ciclo (coleta e

apresentação) de maneira mais completa do que parte das soluções correlatas.

Isso cria um alicerce tecnológico sobre o qual futuras pesquisas podem

desenvolver algoritmos analíticos, modelos preditivos e funcionalidades de

tomada de decisão automatizada.

Em síntese, a discussão dos resultados mostra que o Sistema Melissa

não apenas cumpre os requisitos definidos, mas também preenche lacunas

identificadas na literatura, ao combinar robustez na ingestão de dados,

interface web orientada ao uso científico e mecanismos de segurança física da

colmeia. Esses diferenciais posicionam o artefato como uma contribuição

relevante para o ecossistema de soluções IoT voltadas à apicultura de

precisão.

55

6. CONSIDERAÇÕES FINAIS
O trabalho desenvolvido alcançou seu objetivo geral, que foi "criar uma

interface web para um protótipo de colmeia inteligente que lide com os dados

dos sensores em tempo real, desde o recebimento até o armazenamento e a

exibição". O artefato de software desenvolvido demonstrou ser uma solução

funcional e robusta. Os testes de API comprovaram que o sistema é capaz de

receber dados (RF03), processar regras de negócio (RB03), persistir leituras

(RF04) e registrar alertas (RF05) de forma eficiente, com latência de resposta

(330 ms) bem abaixo do limite de 500 ms estipulado (RNF02).

Paralelamente, todos os objetivos específicos foram atingidos. O

trabalho: a) Levantou os requisitos funcionais, não funcionais e regras de

negócio, consolidados no Documento de Requisitos (Apêndice A). b) Projetou e

implementou o banco de dados, conforme o modelo relacional apresentado. c)

Desenvolveu a interface web responsiva, validando sua adaptabilidade em

dispositivos móveis e a correta implementação dos dashboards e gráficos. d)

Integrou o protótipo físico com a aplicação web, através de uma API de

ingestão (api/ingest.php) segura, que valida os dispositivos por X-API-Key

(RB01, RB02) e está pronta para receber os dados do hardware.

A conclusão deste projeto não encerra as possibilidades do Sistema

Melissa. Pelo contrário, o artefato construído serve como uma plataforma-base

para diversas expansões. A seguir, são apresentadas as propostas de

trabalhos futuros.

Implementação de Notificações Ativas: atualmente, o sistema exige que

o usuário consulte o dashboard (RF08) para verificar alertas (RF05). Uma

evolução natural é a implementação de um serviço de notificações (via e-mail,

SMS ou push) que alerte o pesquisador ativamente e em tempo real sobre

eventos críticos, como uma abertura não autorizada (RB03).

Análise de Dados e Machine Learning: com o acúmulo de dados

históricos na tabela readings (RF04), abre-se a possibilidade para análises

preditivas. Trabalhos futuros poderiam aplicar técnicas de machine learning

56

para identificar padrões complexos, prever a saúde da colônia, ou detectar

anomalias (como a perda de peso súbita) que poderiam passar despercebidas

em gráficos simples.

Suporte a Múltiplos Apiários: embora o banco de dados tenha sido

modelado para suportar múltiplas colmeias (Seção 4.2), a interface atual

(Seção 5.1.2) foca na visualização de uma colmeia por vez. Um trabalho futuro

poderia criar um dashboard "gerencial" que exiba um mapa ou uma visão

consolidada do status de todas as colmeias de um ou mais apiários.

Evolução da Conectividade: a arquitetura atual depende de

conectividade Wi-Fi (Seção 4.3.2), o que pode ser um limitador para a

implantação em zonas rurais. Uma pesquisa futura de grande valor seria a

adaptação do hardware e da arquitetura para utilizar redes de baixa potência e

longo alcance (LPWAN), como LoRaWAN, ou redes celulares (4G/5G),

aumentando drasticamente a viabilidade da aplicação em campo.

O desenvolvimento do Sistema Melissa, portanto, cumpre seu papel

como um artefato de software completo, unindo os conceitos de Apicultura de

Precisão e Internet das Coisas (Capítulo 2) em uma ferramenta acessível e de

baixo custo (Seção 3.1). O trabalho contribui para o ecossistema do Projeto

Melissa no Instituto Federal Baiano, Campus Catu, entregando uma plataforma

validada, documentada (Capítulo 3) e escalável, pronta para as próximas fases

de pesquisa e aplicação prática. O código-fonte do artefato, visando a proteção

da propriedade intelectual associada ao projeto de pesquisa, encontra-se

mantido em um repositório de versionamento privado, tendo seu acesso restrito

aos membros do grupo de pesquisa da instituição.

Referências

ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: a survey.
Computer Networks, v. 54, n. 15, p. 2787-2805, 2010. DOI:
10.1016/j.comnet.2010.05.010. Disponível em:
https://doi.org/10.1016/j.comnet.2010.05.010. Acesso em: 6 nov. 2025.

CARDOSO, D. F.; SILVA, F. S.; MAIA, M. V.; ANGELO, N. Desenvolvimento de
um protótipo de caixa de abelhas com IoT. Trabalho de Conclusão de Curso
(Engenharia de Produção). Instituto Mauá de Tecnologia, 2023. Disponível em:
https://repositorio.maua.br/handle/MAUA/523. Acesso em: 12 nov. 2025.

57

https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://repositorio.maua.br/handle/MAUA/523?utm_source=chatgpt.com
https://repositorio.maua.br/handle/MAUA/523?utm_source=chatgpt.com

CODD, E. F. A relational model of data for large shared data banks.
Communications of the ACM, v. 13, n. 6, p. 377–387, 1970. DOI:
10.1145/362384.362685. Disponível em:
https://doi.org/10.1145/362384.362685. Acesso em: 6 nov. 2025.

COTA, D.; MARTINS, J.; MAMEDE, H.; BRANCO, F. BHiveSense: An
integrated information system architecture for sustainable remote monitoring
and management of apiaries based on IoT and microservices. Journal of Open
Innovation: Technology, Market, and Complexity, v. 9, n. 3, p. 100110, 2023.
Disponível em:
https://www.sciencedirect.com/science/article/pii/S2199853123002123. Acesso
em: 6 nov. 2025.

DATE, C. J. An Introduction to Database Systems. 6. ed., ilust. Vol. 1 de
Addison-Wesley Systems Programming Series. Boston: Addison-Wesley
Publishing Company, 1995. 839 p. ISBN 020154329X; 978-0201543292.
Disponível em:
https://books.google.com.br/books?id=2xBRAAAAMAAJ#:~:text=to%20Databas
e%20Systems-,C.%20J.%20Date,views%2C%20domains%20and%20missing
%20information. Acesso em: 6 nov. 2025.

EMBRAPA Meio-Norte; PEREIRA, F. de M.; SAGRILO, E.; ALCÂNTARA, R. M.
C. M. de (eds. téc.). Anais da VI Jornada Científica da Embrapa Meio-Norte: VI
Jornada Científica da Embrapa Meio-Norte, Teresina, PI, 25 a 27 de novembro
de 2020. Teresina: Embrapa Meio-Norte, 2021. 71 p. (Documentos / Embrapa
Meio-Norte; ISSN 0104-866X; 284). Disponível em:
https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1143459/1/VIJorn
adaCientificaEmbrapaMeioNorteDoc284.2021.pdf. Acesso em: 17 out. 2025.

FONTENELE, T. A. Um sistema baseado em IoT para detecção e notificação
de dano ou furto de colmeias de abelhas. 2022. 107 f. Trabalho de Conclusão
de Curso (Graduação em Sistemas de Informação) – Universidade Federal do
Ceará, Campus de Quixadá, Quixadá, 2022. Disponível em:
http://repositorio.ufc.br/handle/riufc/65432. Acesso em: 6 nov. 2025.

GERONET SERVICES. Apicultura: criação de abelhas e produção de mel.
Porto Alegre: Biblioteca AGPTEA, 2004. 119 p. Disponível em:
https://www.bibliotecaagptea.org.br/zootecnia/apicultura/livros/APICULTURA%2
0CRIACAO%20DE%20ABELHAS%20E%20PRODUCAO%20DE%20MEL.pdf.
Acesso em: 17 out. 2025.

GUBBI, J.; BUYYA, R.; MARUSIC, S.; PALANISWAMI, M. Internet of Things
(IoT): A vision, architectural elements, and future directions. Future Generation
Computer Systems, v. 29, n. 7, p. 1645-1660, 2013. DOI:
10.1016/j.future.2013.01.010. Disponível em:
https://doi.org/10.1016/j.future.2013.01.010. Acesso em: 6 nov. 2025.

HEVNER, A. R.; MARCH, S. T.; PARK, J.; RAM, S. Design science in
information systems research. MIS Quarterly, v. 28, n. 1, p. 75–105, 2004.
Disponível em:

58

https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://www.sciencedirect.com/science/article/pii/S2199853123002123?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S2199853123002123?utm_source=chatgpt.com
https://books.google.com.br/books?id=2xBRAAAAMAAJ#:~:text=to%20Database%20Systems-,C.%20J.%20Date,views%2C%20domains%20and%20missing%20information
https://books.google.com.br/books?id=2xBRAAAAMAAJ#:~:text=to%20Database%20Systems-,C.%20J.%20Date,views%2C%20domains%20and%20missing%20information
https://books.google.com.br/books?id=2xBRAAAAMAAJ#:~:text=to%20Database%20Systems-,C.%20J.%20Date,views%2C%20domains%20and%20missing%20information
https://books.google.com.br/books?id=2xBRAAAAMAAJ#:~:text=to%20Database%20Systems-,C.%20J.%20Date,views%2C%20domains%20and%20missing%20information
https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1143459/1/VIJornadaCientificaEmbrapaMeioNorteDoc284.2021.pdf
https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1143459/1/VIJornadaCientificaEmbrapaMeioNorteDoc284.2021.pdf
https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1143459/1/VIJornadaCientificaEmbrapaMeioNorteDoc284.2021.pdf
http://repositorio.ufc.br/handle/riufc/65432
http://repositorio.ufc.br/handle/riufc/65432
https://www.bibliotecaagptea.org.br/zootecnia/apicultura/livros/APICULTURA%20CRIACAO%20DE%20ABELHAS%20E%20PRODUCAO%20DE%20MEL.pdf
https://www.bibliotecaagptea.org.br/zootecnia/apicultura/livros/APICULTURA%20CRIACAO%20DE%20ABELHAS%20E%20PRODUCAO%20DE%20MEL.pdf
https://www.bibliotecaagptea.org.br/zootecnia/apicultura/livros/APICULTURA%20CRIACAO%20DE%20ABELHAS%20E%20PRODUCAO%20DE%20MEL.pdf
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.future.2013.01.010
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research

https://www.researchgate.net/publication/201168946_Design_Science_in_Infor
mation_Systems_Research. Acesso em: 7 nov. 2025.

KULYUKIN, V.; MUKHERJEE, S.; AMLATHE, P. Toward audio beehive
monitoring: deep learning vs. standard machine learning in classifying beehive
audio samples. Applied Sciences, v. 8, n. 9, p. 1573, 2018. DOI:
10.3390/app8091573. Disponível em: https://doi.org/10.3390/app8091573.
Acesso em: 6 nov. 2025.

MACHADO, P. A. Utilização de tecnologia de precisão na apicultura: uma
revisão sistemática. Trabalho de Conclusão de Curso (Bacharelado em
Zootecnia). Faculdade de Agronomia, Universidade Federal do Rio Grande do
Sul, Porto Alegre, 2024. Disponível em:
https://lume.ufrgs.br/handle/10183/276197. Acesso em: 12 nov. 2025.

MACIEL, M. A. de S.; CAETANO, A. L. L.; GUIMARÃES, P. V. de S.; JUCÁ, S.
C. S. Desenvolvimento de Sistema de Monitoramento IoT Utilizando Princípios
de Aprendizagem Baseada em Projetos. In: WORKSHOP DE INFORMÁTICA
NA ESCOLA (WIE), 23., 2017, Recife. Anais […]. Porto Alegre: Sociedade
Brasileira de Computação, 2017. p. 462–469. DOI: 10.5753/cbie.wie.2017.462.

MARQUES, R.; FRANCO, W.; PINHEIRO, S. L.; MIRANDA, J. I. S.; FREITAS,
E. D. G. de; SOUZA, R. W. R. de. Sistema IoT de monitoramento de colmeias
de abelhas Apis mellifera. In: ESCOLA REGIONAL DE COMPUTAÇÃO DO
CEARÁ, MARANHÃO E PIAUÍ (ERCEMAPI), 12., 2024, Parnaíba/PI. Anais [...].
Porto Alegre: Sociedade Brasileira de Computação, 2024. p. 297–302. DOI:
10.5753/ercemapi.2024.243787. Disponível em:
https://doi.org/10.5753/ercemapi.2024.243787. Acesso em: 12 nov. 2025.

MELO, R. M. Sistema de monitoramento de abelhas Apis mellifera. Trabalho de
Conclusão de Curso (Graduação em Ciência da Computação). Campus de
Crateús, Universidade Federal do Ceará, Crateús, 2025. Disponível em:
https://repositorio.ufc.br/handle/riufc/80027. Acesso em: 12 nov. 2025.

NOCELLI, R. C. F.; ROAT, T. C.; ZACARIN, E. C. M. da S.; MALASPINA, O.
Riscos de pesticidas sobre as abelhas. In: TERCEIRA SEMANA DOS
POLINIZADORES, 3., 2010, Petrolina, PE. Palestras e resumos. Petrolina:
Embrapa Semiárido, 2012. p. 197–212. (Embrapa Semiárido. Documentos,
249). Disponível em:
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/69299/1/Roberta.pdf.
Acesso em: 5 nov. 2025.

PEFFERS, K.; ROTHENBERGER, M.; KUECHLER, B. A design science
research methodology for information systems research. Journal of
Management Information Systems, v. 24, n. 3, p. 45–77, 2007. Disponível em:
https://www.researchgate.net/publication/284503626_A_design_science_resear
ch_methodology_for_information_systems_research. Acesso em: 7 nov. 2025.

PRESSMAN, R. S.; MAXIM, B. R. Engenharia de software: uma abordagem
profissional. 8. ed. Porto Alegre: AMGH, 2016. Disponível em:

59

https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
https://doi.org/10.3390/app8091573
https://lume.ufrgs.br/handle/10183/276197?utm_source=chatgpt.com
https://lume.ufrgs.br/handle/10183/276197?utm_source=chatgpt.com
https://doi.org/10.5753/ercemapi.2024.243787
https://doi.org/10.5753/ercemapi.2024.243787
https://repositorio.ufc.br/handle/riufc/80027?utm_source=chatgpt.com
https://repositorio.ufc.br/handle/riufc/80027?utm_source=chatgpt.com
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/69299/1/Roberta.pdf?utm_source=chatgpt.com
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/69299/1/Roberta.pdf?utm_source=chatgpt.com
https://www.researchgate.net/publication/284503626_A_design_science_research_methodology_for_information_systems_research
https://www.researchgate.net/publication/284503626_A_design_science_research_methodology_for_information_systems_research
https://www.researchgate.net/publication/284503626_A_design_science_research_methodology_for_information_systems_research
https://archive.org/details/pressman-engenharia-de-software-uma-abordagem-profissional-8a

https://archive.org/details/pressman-engenharia-de-software-uma-abordagem-p
rofissional-8a. Acesso em: 7 nov. 2025.

RICKETTS, T. H. et al. Landscape effects on crop pollination services: are there
general patterns? Ecology Letters, v. 11, p. 499-515, 2008. DOI:
10.1111/j.1461-0248.2008.01157.x. Disponível em:
https://doi.org/10.1111/j.1461-0248.2008.01157.x. Acesso em: 6 nov. 2025.

SANTOS, J. O. Um estudo sobre a evolução histórica da apicultura. 2015. 95 f.
Dissertação (Mestrado Profissional em Sistemas Agroindustriais) – Centro de
Ciências e Tecnologia Agroalimentar, Universidade Federal de Campina
Grande, Pombal, PB, 2015. Disponível em:
https://dspace.sti.ufcg.edu.br/handle/riufcg/873. Acesso em: 6 nov. 2025.

SILVA, M. G.; GOMES, I. A.; MEDEIROS, A. C. de; SILVA, R. A. da;
MARACAJÁ, P. B. Apicultura brasileira: aspectos técnicos e práticos no manejo
de abelhas africanizadas. In: Ciências Agrárias: Inovação, Tecnologia,
Desenvolvimento e Extensão. [S.l.]: GEPRA Editora, 2021. p. 190. Disponível
em:
https://www.researchgate.net/publication/354342381_APICULTURA_BRASILEI
RA_ASPECTOS_TECNICOS_E_PRATICOS_NO_MANEJO_DE_ABELHAS_A
FRICANIZADAS. Acesso em: 17 out. 2025.

SOMMERVILLE, I. Engenharia de Software. 10. ed. São Paulo: Pearson, 2019.
Disponível em:
https://www.facom.ufu.br/~william/Disciplinas%202018-2/BSI-GSI030-Engenhar
iaSoftware/Livro/engenhariaSoftwareSommerville.pdf. Acesso em: 7 nov. 2025.

ULLMAN, L. PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide.
5. ed. San Francisco: Peachpit Press, 2017. Disponível em:
https://www.amazon.com.br/PHP-MySQL-Dynamic-Web-Sites/dp/0134301846.
Acesso em: 7 nov. 2025.

VIANA, B. F.; SILVA, F. O. Polinização por abelhas em agroecossistemas. [S.l.:
s.n.], 2010. Disponível em:
http://www.apis.sebrae.com.br/Arquivos/16%C2%BA20Cong_Bras_Apic/Anais_
1/POLINIZA%C3%87%C3%83O%20POR%20ABELHAS%20EM%20AGROEC
OSSISTEMAS.pdf. Acesso em: 6 nov. 2025.

ZANELLA, A.; BUI, N.; CASTELLANI, A.; VANGELISTA, L.; ZORZI, M. Internet
of Things for Smart Cities. IEEE Internet of Things Journal, v. 1, n. 1, p. 22–32,
2014. DOI: 10.1109/JIOT.2014.2306328. Disponível em:
https://doi.org/10.1109/JIOT.2014.2306328. Acesso em: 6 nov. 2025.

ZACEPINS, A.; BRUSBARDIS, V.; MEITALOVS, J.; STALIDZANS, E.
Challenges in the development of Precision Beekeeping. Biosystems
Engineering, v. 130, p. 60–71, 2015. DOI:
10.1016/j.biosystemseng.2014.12.001. Disponível em:
https://doi.org/10.1016/j.biosystemseng.2014.12.001. Acesso em: 6 nov. 2025.

60

https://archive.org/details/pressman-engenharia-de-software-uma-abordagem-profissional-8a
https://archive.org/details/pressman-engenharia-de-software-uma-abordagem-profissional-8a
https://doi.org/10.1111/j.1461-0248.2008.01157.x
https://doi.org/10.1111/j.1461-0248.2008.01157.x
https://dspace.sti.ufcg.edu.br/handle/riufcg/873
https://dspace.sti.ufcg.edu.br/handle/riufcg/873
https://www.researchgate.net/publication/354342381_APICULTURA_BRASILEIRA_ASPECTOS_TECNICOS_E_PRATICOS_NO_MANEJO_DE_ABELHAS_AFRICANIZADAS
https://www.researchgate.net/publication/354342381_APICULTURA_BRASILEIRA_ASPECTOS_TECNICOS_E_PRATICOS_NO_MANEJO_DE_ABELHAS_AFRICANIZADAS
https://www.researchgate.net/publication/354342381_APICULTURA_BRASILEIRA_ASPECTOS_TECNICOS_E_PRATICOS_NO_MANEJO_DE_ABELHAS_AFRICANIZADAS
https://www.researchgate.net/publication/354342381_APICULTURA_BRASILEIRA_ASPECTOS_TECNICOS_E_PRATICOS_NO_MANEJO_DE_ABELHAS_AFRICANIZADAS
https://www.facom.ufu.br/~william/Disciplinas%202018-2/BSI-GSI030-EngenhariaSoftware/Livro/engenhariaSoftwareSommerville.pdf
https://www.facom.ufu.br/~william/Disciplinas%202018-2/BSI-GSI030-EngenhariaSoftware/Livro/engenhariaSoftwareSommerville.pdf
https://www.facom.ufu.br/~william/Disciplinas%202018-2/BSI-GSI030-EngenhariaSoftware/Livro/engenhariaSoftwareSommerville.pdf
https://www.amazon.com.br/PHP-MySQL-Dynamic-Web-Sites/dp/0134301846
https://www.amazon.com.br/PHP-MySQL-Dynamic-Web-Sites/dp/0134301846
http://www.apis.sebrae.com.br/Arquivos/16%C2%BA20Cong_Bras_Apic/Anais_1/POLINIZA%C3%87%C3%83O%20POR%20ABELHAS%20EM%20AGROECOSSISTEMAS.pdf
http://www.apis.sebrae.com.br/Arquivos/16%C2%BA20Cong_Bras_Apic/Anais_1/POLINIZA%C3%87%C3%83O%20POR%20ABELHAS%20EM%20AGROECOSSISTEMAS.pdf
http://www.apis.sebrae.com.br/Arquivos/16%C2%BA20Cong_Bras_Apic/Anais_1/POLINIZA%C3%87%C3%83O%20POR%20ABELHAS%20EM%20AGROECOSSISTEMAS.pdf
http://www.apis.sebrae.com.br/Arquivos/16%C2%BA20Cong_Bras_Apic/Anais_1/POLINIZA%C3%87%C3%83O%20POR%20ABELHAS%20EM%20AGROECOSSISTEMAS.pdf
https://doi.org/10.1109/JIOT.2014.2306328
https://doi.org/10.1109/JIOT.2014.2306328
https://doi.org/10.1016/j.biosystemseng.2014.12.001
https://doi.org/10.1016/j.biosystemseng.2014.12.001

61

APÊNDICE A – DOCUMENTO DE REQUISITOS DO PROTÓTIPO DE
INTERFACE WEB PARA COLMEIA INTELIGENTE

1 IDENTIFICAÇÃO

Projeto: Desenvolvimento de um protótipo de interface web para

monitoramento de variáveis ambientais e segurança em colmeia inteligente.

Discente: Arthur Saldanha Félix Ulisses

Orientador: Gilvan Martins Durães

2 ESCOPO

O sistema consiste em um protótipo web que recebe dados de sensores

instalados em uma colmeia experimental, transmitidos via ESP8266. O sistema

deve:

Coletar e armazenar variáveis ambientais (temperatura, umidade,

luminosidade, UV, peso).

Registrar eventos de segurança (abertura não autorizada da colmeia).

Disponibilizar informações por meio de uma interface web responsiva, com

dashboard, gráficos e alertas.

Garantir autenticação tanto do dispositivo quanto dos usuários.

3 ATORES

Dispositivo (ESP8266): Envia leituras periódicas e eventos via HTTP POST.

Pesquisador: Visualiza leituras e alertas em dashboard.

Administrador: Gerencia colmeias, dispositivos e usuários.

4 REQUISITOS FUNCIONAIS (RF)

RF01 – Cadastrar colmeias com código, descrição e localização.

RF02 – Cadastrar dispositivos vinculados à colmeias, gerando API key única.

RF03 – Receber dados do ESP8266 via HTTP POST, validando pela API key.

RF04 – Persistir leituras em banco, incluindo valores ambientais e JSON bruto.

62

RF05 – Registrar alerta UNAUTHORIZED_OPEN quando detectada abertura

não autorizada.

RF06 – Atualizar automaticamente o campo last_seen do dispositivo a cada

leitura recebida.

RF07 – Autenticar usuários por e-mail e senha, protegendo rotas internas.

RF08 – Exibir dashboard com últimas leituras, gráficos de variáveis ambientais

e lista de alertas.

RF09 – Filtrar e exportar dados e alertas em CSV.

RF10 – Registrar logs de ingestão rejeitada (payload, status, motivo).

5 REQUISITOS NÃO FUNCIONAIS (RNF)

RNF01 – Todas as comunicações devem usar HTTPS.

RNF02 – Tempo de resposta da ingestão deve ser < 500 ms (p95).

RNF03 – Senhas de usuários devem ser armazenadas com hash seguro

(bcrypt/argon2).

RNF04 – Banco relacional (MySQL) com integridade referencial.

RNF05 – Interface web deve ser responsiva (desktop e mobile).

RNF06 – Endpoint de ingestão deve aplicar rate limit para evitar abuso.

RNF07 – Logs devem registrar falhas de API e tentativas inválidas.

6 REGRAS DE NEGÓCIO (RB)

RB01 – Cada dispositivo possui uma API key única e obrigatória.

RB02 – Requisições sem X-API-Key válida devem ser rejeitadas (401).

RB03 – Se security.opened = true, o sistema gera automaticamente um alerta

CRITICAL.

RB04 – Apenas dispositivos ativos (active=true) podem enviar leituras.

RB05 – Apenas usuários autenticados podem acessar dashboards e relatórios.

7 CONTRATO DE API – INGESTÃO

63

7.1 ENDPOINT

POST /api/ingest.php

7.2 HEADERS

Content-Type: application/json

X-API-Key: <chave_unica_do_dispositivo>

7.3 BODY (EXEMPLO)

JSON

{

 "hora": "27/09/2025 17:30:00",

 "temp_ext": 32.8,

 "umid_ext": 57.3,

 "lum_ext": 980,

 "temp_int": 30.2,

 "umid_int": 60.1,

 "lum_int": 850,

 "peso": 21.412,

 "calibracao": 0,

 "uv_index": 2.1,

 "security": { "opened": false }

}

7.4 RESPOSTAS

201 Created → leitura registrada.

401 Unauthorized → chave inválida/ausente.

403 Forbidden → dispositivo inativo.

422 Unprocessable Entity → payload inválido.

64

429 Too Many Requests → rate limit.

500 Server Error → falha interna.

8 MODELO DE DADOS (SIMPLIFICADO)

users (id, name, email, password_hash, role, created_at)

hives (id, code, description, location, created_at)

devices (id, hive_id, name, api_key, active, last_seen)

readings (id, device_id, ts, variáveis ambientais, raw_json)

alerts (id, device_id, hive_id, ts, type, severity, message)

ingest_logs (id, received_at, device_id, status_code, error_message, payload)

9 FLUXOS PRINCIPAIS

Provisionamento de dispositivo: admin cadastra colmeia → cadastra dispositivo

→ gera API key → grava API key no ESP8266.

Ingestão: ESP envia JSON com X-API-Key → API valida → grava leitura → se

opened=true, gera alerta.

Visualização: usuário loga → acessa dashboard → consulta leituras/alertas →

exporta dados.

10 CRITÉRIOS DE ACEITAÇÃO

Leitura com API key válida é registrada em readings com status 201.

Alerta de abertura é registrado em alerts automaticamente.

Leituras sem API key retornam 401 e são logadas.

Dashboard exibe últimas leituras, gráficos e alertas.

Usuário sem login não acessa rotas internas.

11 MÉTRICAS E AVALIAÇÃO

Taxa de ingestão bem-sucedida: > 99,5% (considerando uma margem para

falhas de rede Wi-Fi).

65

Latência de ingestão: p95 < 500 ms (95% das requisições devem ser

respondidas em menos de meio segundo).

Taxa de detecção de abertura: 100% (todos os eventos de abertura devem

gerar um alerta UNAUTHORIZED_OPEN).

66

	1. INTRODUÇÃO
	1.1 CONTEXTUALIZAÇÃO
	1.2 PROBLEMA
	1.3 JUSTIFICATIVA
	1.4 OBJETIVO GERAL
	1.5 OBJETIVOS ESPECÍFICOS
	1.6 TRABALHOS CORRELATOS
	2. FUNDAMENTAÇÃO TEÓRICA
	2.1 FUNDAMENTOS DA APICULTURA E MELIPONICULTURA
	2.2 APICULTURA DE PRECISÃO
	2.3 INTERNET DAS COISAS (IOT) E A APRENDIZAGEM BASEADA EM PROJETOS
	2.4 DESENVOLVIMENTO DE SISTEMAS WEB E BANCO DE DADOS
	3. METODOLOGIA
	3.1 TECNOLOGIAS UTILIZADAS E JUSTIFICATIVA
	3.2 LEVANTAMENTO DE REQUISITOS
	3.2.1 Requisitos Funcionais (RF)
	3.2.2 Requisitos Não Funcionais (RNF)
	3.2.3 Regras De Negócio (RB)
	4. PROJETO E DESENVOLVIMENTO DO SISTEMA
	4.1 MODELAGEM E CASOS DE USO
	Figura 1 – Diagrama de Caso de Uso do Sistema Melissa

	4.2 MODELAGEM DO BANCO DE DADOS
	Figura 2 – Modelo Entidade-Relacionamento (DER) do Sistema Melissa

	4.3 ARQUITETURA DA SOLUÇÃO
	4.3.1 Arquitetura De Componentes
	Figura 3 – Diagrama de Componentes do Sistema Melissa

	4.3.2 Arquitetura de Implantação
	Figura 4 – Diagrama de Implantação do Sistema Melissa

	4.4 MODELAGEM COMPORTAMENTAL
	4.4.1 Interações de Ingestão de Dados
	Figura 5 – Diagrama de Sequência do fluxo de Ingestão de Dados

	4.4.2 Interação em Falhas de Autenticação
	Figura 6 – Diagrama de Sequência do fluxo de Falha de Autenticação (API Key Inválida)

	4.4.3 Fluxo de Atividade
	Figura 7 – Diagrama de Atividade do Fluxo de Ingestão de Dados

	4.5 DETALHES DA IMPLEMENTAÇÃO
	4.6 ESTRATÉGIA DE TESTES E VALIDAÇÃO
	5. RESULTADOS E DISCUSSÃO
	5.1 APRESENTAÇÃO DA INTERFACE WEB
	5.1.1 Autenticação e Controle de Acesso
	Figura 8 – Tela de Autenticação do Sistema Melissa

	5.1.2 Painel de Controle (Dashboard)
	Figura 9 – Dashboard do Sistema Melissa (Filtros, Leituras e Alertas)
	Figura 10 – Dashboard do Sistema Melissa (Gráficos Históricos)

	5.1.3 Gerenciamento do Sistema
	Figura 11 – Tela de Gerenciamento de Usuários

	5.1.4 Gerenciamento de Colmeias e Dispositivos
	Figura 12 – Tela de Gerenciamento de Colmeias
	Figura 13 – Tela de Gerenciamento de Dispositivos

	5.2 VALIDAÇÃO DOS TESTES E ADERÊNCIA AOS REQUISITOS
	5.2.1 Testes de API (Caixa-Preta) e Integração Ponta-a-Ponta
	Figura 14 – Teste de API: Sucesso na Ingestão (Postman)
	Figura 15 – Teste de Integração: Alerta de Segurança no Dashboard
	Figura 16 – Teste de API: Falha de Autenticação (Postman)
	Figura 17 – Teste de API: Log da Falha de Autenticação (Banco de Dados)

	5.2.2 Testes Funcionais da Interface
	Figura 18 – Teste Funcional: Visão do Ator "Pesquisador"
	Figura 19 – Teste Funcional: Responsividade da Interface em Visão Mobile
	Figura 20 – Teste Funcional: Resultado da Exportação de Dados (CSV)

	5.3 DISCUSSÃO DOS RESULTADOS
	6. CONSIDERAÇÕES FINAIS
	Referências
	APÊNDICE A – DOCUMENTO DE REQUISITOS DO PROTÓTIPO DE INTERFACE WEB PARA COLMEIA INTELIGENTE

